Skip to main content

Study of Lagrangian Characteristic times Using Direct Numerical Simulation of Turbulence

  • Conference paper
Turbulent Shear Flows 6

Abstract

Direct numerical simulations and large eddy simulations of homogeneous isotropic turbulence are used to compute Lagrangian statistics of turbulence and, in particular, its time scales. The computed time scales are compared with the spectral time scales that are frequently used in Eddy Damped Quasi-Normal Markovian calculations of the spectrum. The time scale models are rather good at high wavenumber and the results point to directions for improvement of the time scales at low wavenumber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Karman, T.: The fundamentals of the statistical theory of turbulence. J. Aero. Sci. 4, 131 (1937)

    MATH  Google Scholar 

  2. Heisenberg, W.: Zur Statistischen Theorie der Turbulenz. Z. Phys. 124, 628 (1948)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Obukhov, A. M.: Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR 32, 22 (1941)

    Google Scholar 

  4. Millionshikov, M. D.: Decay of homogeneous isotropic turbulence in a viscous incompressible fluid. Dokl. Akad. Nauk SSSR 22, 236 (1939)

    Google Scholar 

  5. Kraichnan, R. H.: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Ogura, Y.: A consequence of the zero fourth order cumulant approximation in the decay of isotropic turbulence. J. Fluid Mech. 16, 33 (1962)

    Article  ADS  Google Scholar 

  7. O’Brien, E. F., Francis, G. C.: A consequence of the zero fourth order cumulant approximation. J. Fluid Mech. 13, 369 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Orszag, S. A.: Analytical theories of turbulence. J. Fluid Mech. 41, 363 (1970)

    Article  ADS  MATH  Google Scholar 

  9. Kolmogoroff, A. N.: Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 26, 6 (1941)

    MathSciNet  Google Scholar 

  10. Pouquet, A., Lesieur, M., Andre, J. C., Basdevant, C.: Evolution of high Reynolds number two dimensional turbulence. J. Fluid Mech. 72, 305 (1975)

    Article  ADS  MATH  Google Scholar 

  11. Lesieur, M.: Turbulence in Fluids: Stochastic and Numerical Modeling (Nijhoff, Dordrecht 1987)

    Book  Google Scholar 

  12. Comte-Bellot, G., Corrsin, S.: Simple Eulerian time correlation of full- and narrow-band velocity signals in grid generated isotropic turbulence. J. Fluid Mech. 25, 273 (1971)

    Article  ADS  Google Scholar 

  13. Yakhot, V., Orszag, S. A.: Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1, 3 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Kraichnan, R. H.: Kolmogoroff’s constant and local interactions. Phys. Fluids 30, 1583 (1987)

    Article  ADS  Google Scholar 

  15. Kraichnan, R. H. An interpretation of the Yakhof-Orszag theory, Phys. Fluids. 30, 2400 (1987) (to be published)

    Article  ADS  MATH  Google Scholar 

  16. Kaneda, Y.: Renormalized expansions in the theory of turbulence with the use of Lagrangian position function. J. Fluid Mech. 107, 131 (1981)

    Article  ADS  Google Scholar 

  17. Herring, J. R.: Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17, 859 (1974)

    Article  ADS  MATH  Google Scholar 

  18. Bertoglio, J. P.: “Etude d’une Turbulence Anisotrope; Modelisation de Sous-Maille et Approche Statistique;” Thèse d’Etat, Universite C. Bernard, Lyon (1986)

    Google Scholar 

  19. Rogallo, R. S.: Numerical experiments in homogeneous turbulence. TM-81315, NASA Ames Research Center (1981)

    Google Scholar 

  20. Squires, K., Eaton, J.: to be published

    Google Scholar 

  21. Chollet, J. P., Lesieur, M.: Parametrization of small scales of three dimensional isotropic turbulence utilizing spectral closures. J. Atm. Sci. 38, 2747 (1981)

    Article  ADS  Google Scholar 

  22. Yeung, P. K., Pope, S. B.: “Lagrangian velocity statistics obtained from direct numerical simulations of homogeneous turbulence,” Sixth Symposium on Turbulent Shear Flows, Toulouse (1987)

    Google Scholar 

  23. Riley, J. J., Patterson, G. S.: Diffusion experiments with numerically integrated isotropic turbulence. Phys. Fluids 17, 292 (1974)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, C.H., Squires, K., Bertoglio, J.P., Ferziger, J. (1989). Study of Lagrangian Characteristic times Using Direct Numerical Simulation of Turbulence. In: André, JC., Cousteix, J., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73948-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73948-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73950-7

  • Online ISBN: 978-3-642-73948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics