Skip to main content

Direct Simulation of a Turbulent Oscillating Boundary Layer

  • Conference paper
Turbulent Shear Flows 6

Abstract

The turbulent boundary layer under a freestream velocity that varies sinusoidally in time around a zero mean is considered. The flow has a rich variety of behaviors including strong pressure gradients, inflection points in the velocity profile, and reversal of the shear stress. A theory for the velocity- and stress profiles at high Reynolds number is formulated. Well-resolved direct Navier-Stokes simulations are conducted over a narrow range of Reynolds numbers. The flow is also computed over a wider range of Reynolds numbers using a new algebraic turbulence model. The results produced by the three approaches and by experiments are compared. Detailed phase-averaged statistical results from the direct simulations are provided to assist turbulence-model development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a 1 :

structure parameter in algebraic turbulence model

f 1 , f 2 …:

unknown nondimensional functions, see (3), (4)… k ≡ 〈u ´2 + v ´2 + w´2〉/2 turbulent kinetic energy

l :

local length scale in algebraic turbulence model

LU 0 /ω :

length scale (1/2 the total travel of the freestream fluid)

Re ≡ U 0 δ l /v :

Reynolds number

SU y :

strain rate, see (17)

t :

time

u, v, w :

velocity components

U ≡ 〈u〉:

mean velocity component

u−U :

fluctuating velocity component

U l :

laminar mean velocity component, see (2)

U :

instantaneous freestream velocity, see (1)

U 0 :

peak freestream velocity, see (1)

u τ :

instantaneous friction velocity (can be negative)

u* :

peak friction velocity, see (5)

U +U/u τ :

wall units

x, y, z :

streamwise, normal, spanwise coordinates

y +y|u τ |/v :

wall units

y r :

roughness height, see (15)

\(\delta_1\equiv \sqrt 2 v/\omega\) :

laminar boundary-layer thickness, see (2)

δ :

turbulent boundary-layer thickness, see (5)

ε :

turbulent dissipation rate

κ :

Karman constant, enters (13) and (14)

Λ x , Λ z :

periods in x and z directions, for the direct simulations

v :

kinematic viscosity

v t :

eddy viscosity, see (17)

φωt :

phase angle

φ 0 :

phase shift, a function of Re, see (7)

ω :

frequency, see (1)

\(\tau \equiv v{U_y} - < u'v' > \) :

total shear stress

\(\bar \tau \equiv-\langle u'v'\rangle\) :

Reynolds shear stress, see (17)

〈 〉:

average in x, z and/or ensemble

References

  1. Schlichting, H.: Boundary-Layer Theory, 7th ed. (McGraw-Hill, New York, 1979) p. 93

    MATH  Google Scholar 

  2. Davis, S. H.: The stability of time-periodic flows. Ann. Rev. Fluid Mech. 8, 57 (1976)

    Article  ADS  Google Scholar 

  3. Hino, M., Kashiwayanagi, M., Nakayama, A., Hara, T.: Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech. 131, 363 (1983)

    Article  ADS  Google Scholar 

  4. Sumer, B. M., Jensen, B. L., Fredsøe, J.: “Turbulence in Oscillatory Boundary Layers”, in Advances in Turbulence, Proceedings of the First European Turbulence Conference, Lyon, France, 1–4 July 1986, ed. by G. Comte-Bellot and J. Mathieu (Springer, Berlin, Heidelberg, 1987) pp. 556

    Chapter  Google Scholar 

  5. Jonsson, I. V.: A new approach to oscillatory rough turbulent boundary layers. Ocean Engin. 7, 109 (1980)

    Article  ADS  Google Scholar 

  6. Spalart, P. R., Leonard, A.: “Direct Numerical Simulation of Equilibrium Turbulent Boundary Layers,” in Turbulent Shear Flows 5 (Springer, Berlin Heidelberg 1986) p. 234

    Google Scholar 

  7. Spalart, P. R.: Numerical study of sink-flow boundary layers. J. Fluid Mech. 172, 307 (1986)

    Article  ADS  MATH  Google Scholar 

  8. Townsend, A. A.: The Structure of Turbulent Shear Flow, 2nd ed. (Cambridge University Press, Cambridge 1976)

    MATH  Google Scholar 

  9. Spalart, P. R.: Numerical simulation of boundary layers: Part 1. Weak formulation and numerical method. NASA T. M. 88222, 1986

    Google Scholar 

  10. Hall, P.: The linear stability of flat Stokes layers. Roy. Soc. London A359, 151 (1978)

    Article  ADS  Google Scholar 

  11. Monkewitz, P. A., Bunster, A.: “The Stability of the Stokes Layers: Visual Observations and Some Theoretical Considerations,” in NASA/ICASE Workshop Stability of Time-Dependent and Spatially-Varying Flows, Aug. 19–20, Hampton, VA (Springer, New York 1987)

    Google Scholar 

  12. Hino, M., Sawamoto, M., Takasu, S.: Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75/2, 193 (1976)

    Article  ADS  Google Scholar 

  13. Merkli, P., Thomann, H.: Transition to turbulence in oscillating pipe flow. J. Fluid Mech. 68/3, 567 (1975)

    Article  ADS  Google Scholar 

  14. Bradshaw, P., Cebeci, T., Whitelaw, J. H.: Engineering Calculation Methods for Turbulent Flow (Academic, New York 1981)

    MATH  Google Scholar 

  15. Johnson, D. A., King, L. S.: A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA J. 23/11, 1684 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  16. Bradshaw, P., Ferriss, D. H., Atwell, N. P.: Calculation of boundary-layer development using the turbulent energy equation. J. Fluid Mech. 28/3, 593 (1967)

    Article  ADS  Google Scholar 

  17. Cebeci, T., Smith, A. M. O.: Analysis for Turbulent Boundary Layers (Academic, New York 1974)

    Google Scholar 

  18. Jensen, B. L., Sumer, B. M., Fredsøe, J.: Transition to turbulence at high Re-numbers in oscillating boundary layers. Progr. Rep. 66, Inst. of Hydron. and Hydraulic Eng., Technical Univ. of Denmark

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spalart, P.R., Baldwin, B.S. (1989). Direct Simulation of a Turbulent Oscillating Boundary Layer. In: André, JC., Cousteix, J., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73948-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73948-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73950-7

  • Online ISBN: 978-3-642-73948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics