A Numerical Study of a Stably-Stratified Mixing Layer

  • Chantal Staquet
  • James J. Riley


The dynamics of a stably-stratified unstable mixing layer are studied using three-dimensional direct numerical simulations. The effects of the stable stratification on the two- and three-dimensional instabilities, on the vorticity dynamics, and on the flow energetics are analyzed. In particular, the behavior of the flow in the later stages of decay, when the effects of stratification have become dominant, are investigated. It is found useful to then interpret the flow in terms of propagating (internal wave) and nonpropagating components, the latter associated with the potential vorticity of the flow.


Internal Wave Potential Vorticity Richardson Number Vertical Vorticity Stratification Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ho, C.-M., Huerre, P. (1984): “Perturbed Free Shear Layers”, Ann. Rev. Fluid Mech. 365–423Google Scholar
  2. 2.
    Scotti, R. S., Corcos, G. M. (1972): “An Experiment on the Stability of Small Disturbances in a Stratified Free Shear Layer”, J. Fluid Mech. 52, 400–528CrossRefGoogle Scholar
  3. 3.
    Thorpe, S. A. (1973): “Experiments on Instability and Turbulence in a Stratified Shear Flow”, J. Fluid Mech. 61, 731–751ADSCrossRefGoogle Scholar
  4. 4.
    Koop, C. G., Browand, F. K. (1979): “Instability and Turbulence in a Stratified Fluid with Shear”, J. Fluid Mech. 93, 135–159ADSCrossRefGoogle Scholar
  5. 5.
    Patnaik, P. C., Sherman, F. S., Corcos, G. M. (1976): “A Numerical Simulation of Kelvin-Helmholtz Waves of Finite Amplitude”, J. Fluid Mech. 73, 215–240ADSMATHCrossRefGoogle Scholar
  6. 6.
    Klaassen, G. P., Peltier, W. R. (1985): “Evolution of Finite Amplitude Kelvin-Helmholtz Billows in Two Spatial Dimensions”, J. Atm. Sci. 42, 1321–1339ADSCrossRefGoogle Scholar
  7. 7.
    Lin, J.-T., Pao, Y.-H. (1979): “Wakes in Stratified Fluids”, Ann. Rev. Fluid Mech. 11, 317–338ADSCrossRefGoogle Scholar
  8. 8.
    Riley, J. J., Metcalfe, R. W., Weissman, M. A. (1981): “Direct Numerical Simulations of Homogeneous Turbulence in Density-Stratified Fluids,” in Proc. AIP Conf on Nonlinear Properties of Internal Waves, ed. by B. J. West, pp. 79–112Google Scholar
  9. 9.
    Gage, K. S. (1979): “Evidence for a k −5/3 Law Inertial Range in Mesoscale Two-Dimensional Turbulence”, J. Atmos. Sci. 36, 1950–1954ADSCrossRefGoogle Scholar
  10. 10.
    Lilly, D. K. (1983): “Stratified Turbulence and the Mesoscale Variability of the Atmosphere”, J. Atmos. Sci. 40, 749–761ADSCrossRefGoogle Scholar
  11. 11.
    Muller, P., Holloway, G., Henyey, F., Pomphrey, N. (1986): “Nonlinear Interactions Among Internal Waves”, Rev. Geophys. 24, 493–536ADSCrossRefGoogle Scholar
  12. 12.
    Kerr, R. M. (1985): “Higher-Order Derivative Correlations and the Alignment of Small-Scale Structures in Isotropic Numerical Turbulence”, J. Fluid Mech. 153, 31–58ADSMATHCrossRefGoogle Scholar
  13. 13.
    Michalke, A. (1964): “On the Inviscid Instability of the Hyperbolic-Tangent Velocity Profile”, J. Fluid Mech. 19, 543–556MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Miksad, R. W. (1972): “Experiments on the Nonlinear Stages of Free-shear-layer Transition”, J. Fluid Mech. 56, 695–719ADSCrossRefGoogle Scholar
  15. 15.
    Hazel, P. (1972): “Numerical Studies of the Stability of Inviscid Stratified Shear Flows”, J. Fluid Mech. 51, 39–61ADSMATHCrossRefGoogle Scholar
  16. 16.
    Metcalfe, R. W., Orszag, S. A., Brachet, M. E., Menon, S., Riley, J. J. (1987): “Secondary Instability of a Temporally Growing Mixing Layer”, J. Fluid Mech. 184, 207–243ADSMATHCrossRefGoogle Scholar
  17. 17.
    Turner, J. S. (1973): Buoyancy effects in Fluids, (Cambridge University Press, 1973)MATHCrossRefGoogle Scholar
  18. 18.
    Lange, R. E.: “Decay of Turbulence in Stratified Salt Water”, Ph.D. Thesis, University of California, San DiegoGoogle Scholar
  19. 19.
    Staquet, C., Riley, J. J.: “On the Velocity Field Associated with Potential Vorticity”, accepted for publication in Dynamics of Atmospheres and Oceans.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Chantal Staquet
    • 1
  • James J. Riley
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations