Computational Study of the Unsteady Flow due to Wakes Passing Through a Channel

  • B. Schönung
  • R. R. Manbadi
  • W. Rodi


The flow in, and the heat transfer to, turbine cascades are influenced strongly by rotor-stator-interaction causing wakes from the preceding row to pass through the cascade channel. Predictions of this unsteady flow are presented for the idealised case of a plane channel with the wakes generated by cylinders moving past the inlet plane. The calculations are obtained with an unsteady finite-volume method employing the kε turbulence model. The calculation procedure is verified first for developing steady channel flow and is then applied to the unsteady passing wake situation for various moving-cylinder-channel configurations. The results show that the passing wakes cause much stronger velocity fluctuations then would be due to turbulence.


Wall Shear Stress Turbulent Kinetic Energy Unsteady Flow Strouhal Number Rotor Blade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reichardt, H. (1950): Gesetzmäßigkeiten der freien Turbulenz. VDI-Forschungsheft 414 (VDI-Verlag, Düsseldorf)Google Scholar
  2. 2.
    Pfeil, H., Eifler, J. (1976): Turbulenzverhältnisse hinter rotierenden Zylindergittern. Forsch. Ing. Wes. 42/1, 27–32ADSCrossRefGoogle Scholar
  3. 3.
    Raj, R., Lakshminarayana, B. (1973): Characteristics of the wake behind a cascade of airfoils. J. Fluid Mech. 61/4, 707–730ADSMATHCrossRefGoogle Scholar
  4. 4.
    Binder, A., Förster, W., Kruse, H., Rogge, H. (1984): “An Experimental Investigation into the Effect of Wakes on the Unsteady Turbine Rotor Flow,” Paper ASME 84-GT-178Google Scholar
  5. 5.
    Hodson, H. P. (1984): “Measurements of Wake-Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines,” Paper ASME 84-GT-189Google Scholar
  6. 6.
    Scott, J. N., Hankey, W. L. (1986): Navier-Stokes solutions of unsteady flow in a compressor rotor. J. Turbomachinery 108, 206–215CrossRefGoogle Scholar
  7. 7.
    Launder, B. E., Spalding, D. B. (1974): The numerical computation of turbulent flow. Comput. Meth. Appl. Mech. Engin. 3, 269–289ADSMATHCrossRefGoogle Scholar
  8. 8.
    Patankar, S. V. (1980): Numerical Heat Transfer in Fluid Flow (Hemisphere Publishing Corp., McGraw Hill Book Company, New York)Google Scholar
  9. 9.
    Leonard, B. P. (1979): A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engin. 19, 59–98ADSMATHCrossRefGoogle Scholar
  10. 10.
    Van Doormal, J. P., Raithby, G. D. (1984): Enhancements of the SIMPLE method for predicting incompressible fluid flow. Num. Heat Transfer 7, 147–163ADSGoogle Scholar
  11. 11.
    Stone, H. L. (1968): Iterative solution of implicit approximations of multidimensional partial differential equations. J. Num. Anal. 5, 530–560ADSMATHCrossRefGoogle Scholar
  12. 12.
    Dean, R. B. (1974): “An Investigation of Shear Layer Interaction in Ducts and Diffusors;” Ph.D. Thesis, Imperial College, London University, 1974Google Scholar
  13. 13.
    Byrne, J., Hatton, A. P., Marriot, P. D. (1970): Turbulent flow and heat transfer in the entrance region of a parallel wall passage. Proc. Inst. Mech. Engin. 184, 697–712CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • B. Schönung
    • 1
  • R. R. Manbadi
    • 1
  • W. Rodi
    • 1
  1. 1.Institute for HydromechanicsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations