Skip to main content

Turbulent Transport and Evaporation of Droplets Generated at an Air-Water Interface

  • Conference paper
Turbulent Shear Flows 6

Abstract

The bursting of air bubbles produced by whitecaps is the primary mechanism in the contribution of sea spray droplets over the ocean. These evaporating droplets contribute to the transfer of moisture from the sea to the atmosphere, interfere with the transport and deposition of some gases and other aerosols and produce most of the sea-salt aerosols.

As part of the continuing Humidity Exchange Over the Sea (HEXOS) programme, the laboratory oriented subprogramme HEXIST takes advantage of the unique possibilities of the IMST Large Air-Sea Interaction Simulation Tunnel to test some models and parameterizations that can eventually be extended to the open ocean. The emphasis is on the microphysics and turbulent transport processes in the lowest atmospheric layer, and especially:

  • bubble-mediated spray droplet production,

  • aerosol transport by turbulence,

  • droplet evaporation in turbulent humidity field,

  • water vapor flux and turbulent field structure.

The HEXIST programme includes simultaneous developments of numerical models and experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bass, A. F. de, Van Dop, H., Nieuwstadt, F. T. M. (1986): An application of the Langevin equation for inhomogeneous conditions to dispersion in a convective boundary layer. Q. J. Roy. Met. Soc. 12, 165–180

    Article  Google Scholar 

  • Baldy, S., Bourguel, M. (1985): Measurements of bubbles in a stationary field of breaking waves by a laser-based single-particle scattering technique. J. Geophys. Res. 90, 1037–1047

    Article  ADS  Google Scholar 

  • Beard, K. V., Pruppacher, H. R. (1971): A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci. 28, 1455–1464

    Article  ADS  Google Scholar 

  • Bhatti, M. S., Savery, C. W. (1975): Augmentation of heat transfer in a laminar external gas boundary layer by the vaporization of suspended droplets. J. Heat Transf. Trans. ASME 1975, 179–184

    Google Scholar 

  • Blanchard, D. C., Woodcock, A. H. (1957) Bubble formation and modification in the sea and its meteorological significance. Tellus 9, 145–158

    Article  ADS  Google Scholar 

  • Bonmarin, P., Ramamonjiarisoa, A. (1985): Deformation to breaking waves of deep water gravity waves. Exper. Fluids 3, 11–16

    Article  ADS  Google Scholar 

  • Coantic, M., Ramamonjiarisoa, A., Mestayer, P., Resch, F., Favre, A. (1981): Wind-water tunnel simulation of small-scale ocean-atmosphere interactions. J. Geophys. Res. 86, 6607–6626

    Article  ADS  Google Scholar 

  • De Leeuw, G. (1986): Size distributions of giant aerosol particles close above sea level, J. Aerosol Sci., 17, 293–296

    Article  Google Scholar 

  • Durbin, P. A., Hunt, J. C. R. (1980): Dispersion from elevated sources in turbulent boundary layers. J. Mécanique 19, 679–695

    ADS  MATH  Google Scholar 

  • Edson, J. B. (1987): Lagrangian Model Simulations of the Turbulent Transport and Evaporation of Spray Droplets in a Wind-Wave Tunnel,” M.S. Thesis, Dept. of Meteorology, Pennsylvania State University, University Park, PA 16802, USA

    Google Scholar 

  • Fairall, C. W., Davidson, K. L., Schacher, G. E. (1984): Application of a mixed-layer model to aerosols in the marine boundary layer. Tellus 36b, 203–211

    Article  ADS  Google Scholar 

  • Gryning, S. E., Van Ulden, A. P., Larsen, S. E. (1983): Dispersion from a continuous ground-level source investigated by a K model. Q. J. Roy. Meteorol. Soc. 109, 355–364

    ADS  Google Scholar 

  • Hinze, J. O. (1975): Turbulence (McGraw-Hill, New York) pp. 460–467

    Google Scholar 

  • Katsaros, K. B., Smith, S. D., Oost, W. A. (1987): HEXOS-Humidity Exchange Over the Sea, A program for research on water-vapor and droplet fluxes from sea to air at moderate to high wind speeds. Bull. Am. Meteorol. Soc. 68, 466–476

    Article  ADS  Google Scholar 

  • Kientzler, C. F., Arons, A. B., Blanchard, D. C., Woodcock, W. A. (1954): Photographic investigation of the projection of droplets by bubble bursting at a water surface. Tellus 6, 1–7

    Article  ADS  Google Scholar 

  • Lefauconnier, C. (1985): Influence des embruns sur le flux de vapeur d’eau a la surface de la mer, Rapport de stage I.T.M. Ecole d’Ing. de la Météorol. Nat., Toulouse, France

    Google Scholar 

  • Legg, B. J., Raupach, M. R. (1982): Markov-chain simulation of particles in inhomogeneous flows: The mean drift velocity induced by a gradient in Eulerian velocity variance. Boundary-Layer Meteorol. 24, 3–13

    Article  ADS  Google Scholar 

  • Ley, A. J., Thomson, D. J. (1983): A random walk model of dispersion in the diabatic surface layer. Q. J. Roy. Meteorol. Soc. 109, 867–880

    Article  ADS  Google Scholar 

  • Ling, S. C., Kao, T. W. (1976): Parameterization of the moisture and heat transfer process over the ocean under whitecap sea states. J. Phys. Oceanogr. 6, 306–315

    Article  ADS  Google Scholar 

  • Meek, C. C., Jones, B. G. (1973): Studies of the behavior of heavy particles in a turbulent fluid flow. J. Atmos. Sci. 30, 239–244

    Article  ADS  Google Scholar 

  • Mestayer, P., Lefauconnier, C. (1988): Spray droplet generation, transport and evaporation in wind-wave tunnel during the humidity exchange over the sea experiments in the simulation tunnel. J. Geophys. Res. 93, 572–586

    Article  ADS  Google Scholar 

  • Monahan, E. C. (1986): Comment on ‘Bubble and aerosol spectra produced by a laboratory breaking wave’. J. Geophys. Res. 87, 5865–5867

    Article  ADS  Google Scholar 

  • Monahan, E. C., Zietlow, C. R. (1969): Laboratory comparisons of fresh-water and salt-water white-caps. J. Geophys. Res. 74, 6961–6966

    Article  ADS  Google Scholar 

  • Monahan, E. C., Davidson, K. L., Spiel, D. E. (1982): Whitecaps aerosol productivity deduced from simulation tank measurements. J. Geophys. Res. 87, 8898–8904

    Article  ADS  Google Scholar 

  • Preobrazhenskii, L. Yu. (1973): Estimation of the content of spray drops in the near-water layer of the atmosphere. Fluid. Mech. Sov. Res. 2, 95–100

    Google Scholar 

  • Pruppacher, H. R., Klett, J. D. (1978): Microphysics of Clouds and Precipitation (Reidel, Dordrecht)

    Book  Google Scholar 

  • Rogers, R. R. (1979): A Short Course in Cloud Physics (Pergamon, New York)

    Google Scholar 

  • Schacher, G. E., Davidson, K. L., Fairall, C. W., Spiel, D. E. (1981): Calculation of optical extinction from aerosol spectral data. Appl. Opt. 20, 3951–3957

    Article  ADS  Google Scholar 

  • Slinn, S. A., Slinn, W. G. N. (1981): “Modeling of Atmospheric Particulate Deposition to Natural Waters,” in Atmospheric Pollutants in Natural Waters, ed. by S. J. Eisenreich (Butterworth, Stoneham, MA) pp. 23–53

    Google Scholar 

  • Thomson, D. J. (1984): Random walk modeling of diffusion in inhomogeneous turbulence. Q. J. Roy. Meteorol. Soc. 110, 1107–1120

    Article  ADS  Google Scholar 

  • Woo, S. W., Hamielec, A. E. (1971): A numerical method of determining the rate of evaporation of small water drops falling at terminal velocity in air. J. Atm. Sci. 28, 1448–1454

    Article  ADS  Google Scholar 

  • Wu, J. (1979): Spray in the atmospheric surface layer: Review and analysis of laboratory and oceanic results. J. Geophys. Res. 84, 1693–1704

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mestayer, P.G., Edson, J.B., Fairall, C.W., Larsen, S.E., Spiel, D.E. (1989). Turbulent Transport and Evaporation of Droplets Generated at an Air-Water Interface. In: André, JC., Cousteix, J., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73948-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73948-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73950-7

  • Online ISBN: 978-3-642-73948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics