A Thermodynamic Theory for Turbulence

  • J. Verhas
Conference paper


Phenomenological thermodynamics is often regarded as a science dealing with averages over chaotic molecular motions, while its basic principles are free from stochastic considerations. This fact leads to the idea that thermodynamics should be able to deal with other averages as well, even with averages over turbulent domains.


Constitutive Equation Dynamic Variable Order Tensor Laminar Solution Phenomenological Thermodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Morse: Trans.Am.Mat.Soc. 27 343 (1925)MathSciNetGoogle Scholar
  2. J. Rotta: Z. fur Phys. 129 547 (1951).CrossRefMATHADSMathSciNetGoogle Scholar
  3. J. Rotta: Z. fur Phys. 131 51 (1951)CrossRefMATHADSMathSciNetGoogle Scholar
  4. J.O. Hinze: Turbulence. Mc Graw-Hill. New York 1959.Google Scholar
  5. S.R. De Groot-P Mazur: Non-Equilibrium Thermodynamics. North-Holland Publ. Co. Amsterdam 1962.Google Scholar
  6. I. Gyarmati: Non-Equilibrium Thermodynamics. Springer, Berlin, 1970.Google Scholar
  7. I. Muller: Arch. Rat. Mech. Anal. 26 118 (1967).CrossRefGoogle Scholar
  8. I. Muller: Arch. Rat. Mech. Anal. 40 1 (1971).CrossRefGoogle Scholar
  9. I. Muller: Arch. Rat. Mech. Anal. 41 319 (1971)CrossRefGoogle Scholar
  10. B.E. Launder-D.B. Spalding: Mathematical Models of Turbulence. Acad.Press. London 1972.MATHGoogle Scholar
  11. I. Gyarmati: Non-Equilib. Thermodyn. 2 233 (1977)CrossRefADSGoogle Scholar
  12. M. Frias: Thermodynamically Structured Flows. Rheology III. 749. Plenum Press. New York (1980)Google Scholar
  13. G. Lebon: Int. J. Engng. Sci. 18 727 (1980)CrossRefMATHGoogle Scholar
  14. G.A. Kluitenberg: Physica 87A 302 (1977).ADSGoogle Scholar
  15. G.A. Kluitenberg: Physica 109A 91 (1981)ADSMathSciNetGoogle Scholar
  16. W. Ebeling: Ann.d.Phys. 40(7) 25 (1983).CrossRefMATHADSMathSciNetGoogle Scholar
  17. W. Ebeling: Ann.d.Phys. 40(7) 51 (1983)CrossRefMATHADSMathSciNetGoogle Scholar
  18. G.A. Maugin: Int.J.Engng.Sci. 21 705 (1983)CrossRefMATHMathSciNetGoogle Scholar
  19. J. Verhas: J.Non-Equilib. Thermodyn. 8 201 (1983)CrossRefADSGoogle Scholar
  20. J. Verhas: Ann.d.Phys. 40(7) 189 (1983)CrossRefADSGoogle Scholar
  21. D. Jou, C. Perez-Garcia and J. Casas-Vazquez: J.Phys.A. 17 2799 (1984)CrossRefADSMathSciNetGoogle Scholar
  22. J. Verhas: Acta Phys.Hung. 55 275 (1984)MathSciNetGoogle Scholar
  23. J. Verhas: Acta Mech. (Vienna) 53 125 (1984)MATHGoogle Scholar
  24. M.T. Landahl E Mollo-Christensen: Turbulence. Cambridge Univ.Press. Cambridge, London 1986.MATHGoogle Scholar
  25. B. Nyiri: Acta Phys-Hung. 60 245 (1906)MathSciNetGoogle Scholar
  26. J. Verhas: Int.J.Heat Mass Transfer 30 1001 (1987)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Verhas
    • 1
  1. 1.Technical University BudapestBudapestHungary

Personalised recommendations