Maps in all Varieties — The Cytoskeleton of Trypanosoma Brucei

  • T. Seebeck
  • A. K. Schlaeppi
  • A. Hemphill
  • M. Affolter
  • L. Rindisbacher
Conference paper
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 3)

Abstract

African trypanosomes, the causative agents of sleeping sickness in man and of Nagana in cattle are an old scourge of mankind, but a new entry to the field of cell biology. These flagellate protozoa have long been the subject of clinical, veterinary and epidemiological research. However, it is not very long since their attraction as model organisms for cell biology has been appreciated. Several reviews have recently appeared which summarize the progress made in different areas of trypanosomal cell biology, such as glycolysis (Opperdoes, 1987), the lipid-anchoring of external membrane proteins (Ferguson et al., 1988), the genetics of the variable surface glycoproteins (Van der Ploeg, 1987), the organization of the mitochondrial genes (Simpson, 1987), the phenomenon of RNA transsplicing (Borst, 1986) and posttranscriptional RNA editing (Maizels and Weiner, 1988).

Keywords

Carbohydrate Tate Inositol Editing Flavin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature References

  1. Balaban N, Waithaka HK, Njogu AR, Goldman R (1988) Isolation of subpellicular microtubule proteins from trypanosomatidae which mediate crosslinking of microtubules. SubmittedGoogle Scholar
  2. Borst P (1986) Discontinuous transcription and antigenic variation in trypanosomes. Ann Rev Biochem 55: 701–732PubMedCrossRefGoogle Scholar
  3. Bramlett GT, Chang S, Flavin M (1987) Periodic crosslinking of microtubules by cytoplasmic microtubule-associated and microtubule-corset proteins from a trypanosomatid. Proc Natl Acad Sci USA 84: 3259–3263CrossRefGoogle Scholar
  4. Dolan MT, Reid CG, Voorheis HP (1986) Calcium ions initiate the selective depolymerization of the pellicular microtubules in bloodstream forms of Trypanosoma brucei. J Cell Sci 80: 123–140PubMedGoogle Scholar
  5. Ferguson MAJ, Mormans SW, Dwek RA, Rademacher TW (1988) Glycosyl-phosphatidyl inositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239: 753–759PubMedCrossRefGoogle Scholar
  6. Imboden MA, Blum B, DeLange T, Braun R, Seebeck T (1986) Tubulin mRNAs of Trypanosoma brucei. J Mol Biol 188: 393–402PubMedCrossRefGoogle Scholar
  7. Jensen CG, Smaill BH (1986) A technique for analyzing the spatial organization of microtubular arms and bridges. Ann NY Acad Sci 446: 417–419CrossRefGoogle Scholar
  8. Maizels N, Weiner A (1988) In search of a template. Nature 334: 469–470PubMedCrossRefGoogle Scholar
  9. Opperdoes FR (1987) Compartmentation of carbohydrate metabolism in trypanosomes. Ann Rev Microbiol 41: 127–152CrossRefGoogle Scholar
  10. Ruben L, Patton CL (1987) Calmodulin from Trypanosoma brucei: Immunological analysis and genomic organization. Meth Enzymol 139: 262–276PubMedCrossRefGoogle Scholar
  11. Schneider A, Eichenberger W, Seebeck T (1988a) A microtubule-binding protein of Trypanosoma brucei which contains covalently bound fatty acid. J Biol Chem 263: 6472–6475PubMedGoogle Scholar
  12. Schneider A, Hemphill A, Wyler T, Seebeck T (1988b) High-molecular weight microtubule-associated protein from T. brucei contains tandemly repeated, near-identical sequences. Science 241: 459–462PubMedCrossRefGoogle Scholar
  13. Schneider A, Lutz HU, Marugg R, Gehr P, Seebeck T (1988c) Spectrin-like proteins in the paraflagellar rod structure of Trypanosoma brucei. J Cell Sci 90: 307–315PubMedGoogle Scholar
  14. Schneider A, Sherwin T, Sasse R, Russell DG, Gull K, Seebeck T (1987) Subpellicular and flagellar microtubules of Trypanosoma brucei brucei.contain the same alpha-tubulin isotypes. J Cell Biol 104: 431–438PubMedCrossRefGoogle Scholar
  15. Sherwin T, Schneider A, Sasse R, Seebeck T, Gull K (1987) Distinct localization and cell cycle dependence of C-terminally tyrosinolated alpha-tubulin in the microtubules of Trypanosoma brucei brucei. J Cell Biol 104: 439–446PubMedCrossRefGoogle Scholar
  16. Seebeck T, Whittaker P, Imboden MA, Hardman N, Braun R (1983) Tubulin genes of Trypanosoma brucei: A tightly clustered family of alternating genes. Proc Natl Acad Sci USA 80: 4634–4638PubMedCrossRefGoogle Scholar
  17. Simpson L (1987) The mitochondrial genome of kinetoplastoid protozoa: Genomic organization, transcription, replication and evolution. Ann Rev Microbiol 41: 363–382CrossRefGoogle Scholar
  18. Thomashow LS, Milhausen M, Rutter WJ, Agabian N (1983) Tubulin genes are tandemly linked and clustered in the genome of Trypanosoma brucei. Cell 32: 35–43PubMedCrossRefGoogle Scholar
  19. Van der Ploeg LHT (1987) Control of variant surface antigen switching. Cell 51: 159–161PubMedCrossRefGoogle Scholar
  20. Vickerman K, Preston TM (1976) Comparative cell biology of the kinetoplastid flagellates. In: Lumsden WHR, Evans DA (eds) Biology of the Kinetoplastida. Academic Press, New York, pp 35–130Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • T. Seebeck
    • 1
  • A. K. Schlaeppi
    • 1
  • A. Hemphill
    • 1
  • M. Affolter
    • 1
  • L. Rindisbacher
    • 1
  1. 1.Institut für Allgemeine MikrobiologieBernSwitzerland

Personalised recommendations