Procollagen Processing Control of Type I Collagen Fibril Assembly

  • David J. S. Hulmes
  • A. Paul Mould
  • Karl E. Kadler
  • John A. Chapman
  • Darwin J. Prockop
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 3)

Abstract

Vertebrate collagens constitute a family of at least twelve genetic types that shows remarkable diversity in molecular structure and supramolecular assembly (Mayne & Burgeson, 1987). Types I, II and III collagens assemble in vivo to form fibrils of uniform diameter, near circular cross-section and with a characteristic axial periodicity of 65 to 67 nm (D). Fibrils in vivo are long (several µm) and diameters range from 8 nm to 500 nm, depending on collagen type, species, age and tissue of origin (Parry & Craig, 1984). The mechanisms that control fibril shape and diameter in vivo are poorly understood.

Keywords

Crystallization Filtration Electrophoresis Fibril Turbidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi E, Hayashi, T (1986) In vitro formation of hybrid fibrils of type V collagen and type I collagen. Connect Tiss Res 14: 257–266CrossRefGoogle Scholar
  2. Berg RA, Birk DE, Silver FH (1986) Physical characterization of type I procollagen in solution: evidence that the propeptides limit self-assembly. Int J Biol Macromol 8: 177–182CrossRefGoogle Scholar
  3. Chandrasekhar S, Kleinman HK, Hassell JR, Martin GR, Termine JD, Trelstad RL (1984) Regulation of type I collagen fibril assembly by link proteins and proteoglycans. Collagen Rel Res 4: 323–338Google Scholar
  4. Farber S, Garg A, Birk DE, Silver FH (1986) Collagen fibrillogenesis in vitro: evidence for prenucleation and nucleation steps. Int J Biol Macromol 8: 37–42CrossRefGoogle Scholar
  5. Fessler LI, Timpl R, Fessler JH (1981) Assembly and processing of procollagen type III in chick embryo blood vessels. J Biol Chem 256: 2531–2537PubMedGoogle Scholar
  6. Fleischmajer R, Perlish JS, Olsen BR (1987) The carboxylpropeptide of type I procollagen in skin fibrillogenesis. J Invest Dermatol 89: 212–215PubMedCrossRefGoogle Scholar
  7. Gross J, Bruns RR (1984) Another look at fibrillogenesis. In: Trelstad RL (ed) The role of the extracellular matrix in development. Alan R Liss, New York, p 479Google Scholar
  8. Halila R, Peltonen L (1986) Purification of human procollagen type III N-proteinase from placenta and preparation of antiserum. Biochem J 239: 47–52PubMedGoogle Scholar
  9. Holmes DF, Capaldi MJ, Chapman JA (1986) Reconstitution of collagen fibrils in vitro; the assembly process depends on the initiation procedure. Int J Biol Macromol 8: 161–166CrossRefGoogle Scholar
  10. Hojima Y, van der Rest M, Prockop DJ (1985) Type I procollagen carboxyl-terminal proteinase from chick embryo tendons. J Biol Chem 260: 15996–16003PubMedGoogle Scholar
  11. Hulmes DJS, Bruns RR, Gross J (1983) On the state of aggregation of newly secreted procollagen. Proc Nat Acad Sei USA 80: 388–392CrossRefGoogle Scholar
  12. Kadler KE, Hojima Y, Prockop DJ (1987) Assembly of collagen fibrils de novo by cleavage of type I pC-collagen with C-proteinase. J Biol Chem 262: 15696–15701PubMedGoogle Scholar
  13. Kadler KE, Hojima Y, Prockop DJ (1988) Assembly of type I collagen fibrils de novo. J Biol Chem 263: 10517–10523PubMedGoogle Scholar
  14. Kessler E, Adar R, Goldberg B, Niece R (1986) Partial purification and characterisation of a procollagen C-proteinase from the culture medium of mouse fibroblasts. Collagen Rel Res 6: 249–266Google Scholar
  15. Lapiere Ch M, Nusgens B, Pierard GE (1977) Interaction between collagen type I and III in conditioning bundles organisation. Connect Tiss Res 5: 21–29CrossRefGoogle Scholar
  16. Mayne R, Burgeson RE (1987) Structure and function of collagen types. Academic Press, New York LondonGoogle Scholar
  17. Miyahara M, Njieha FK, Prockop DJ (1982) Formation of collagen fibrils in vitro by cleavage of procollagen with procollagen proteinases. J Biol Chem 257: 8442–8448PubMedGoogle Scholar
  18. Miyahara M, Bruckner P, Helle O, Prockop DJ (1983) Aggregation of a type I collagen precursor containing N-terminal propeptides. Collagen Rel Res 3: 279–293Google Scholar
  19. Mould AP, Hulmes DJS (1987) Surface-induced aggregation of type I procollagen. J Mol Biol 195: 543–553PubMedCrossRefGoogle Scholar
  20. Na GC (1988) UV spectroscopic characterisation of type I collagen. Collagen Rel Res 8: 315–330Google Scholar
  21. Parry DAD, Craig AS (1984) Growth and development of collagen fibrils in connective tissue. In: Ruggeri A, Motta PM (eds) Ultrastructure of the connective tissue matrix. Martinus Nijhoff, Boston The Hague, p 34Google Scholar
  22. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA (1979) The biosynthesis of collagen and its disorders. New Engl J Med 301:13–23, 77–85Google Scholar
  23. Prockop DJ, Kivirikko KI (1984) Heritable diseases of collagen. New Engl J Med 311: 376–386PubMedCrossRefGoogle Scholar
  24. Tanzawa K, Berger J, Prockop DJ (1985) Type I procollagen N-proteinase from whole chick embryos. J Biol Chem 260: 120–1126Google Scholar
  25. Uitto J, Allan RE, Polak KL (1979) Conversion of type II procollagen to collagen. Eur J Biochem 99: 97–103PubMedCrossRefGoogle Scholar
  26. Veis A, Anesey J, Yuan L, Levy SJ (1973) Evidence for an amino-terminal extension in high molecular weight collagens from mature bovine skin. Proc Nat Acad Sci USA 70: 1464–1467PubMedCrossRefGoogle Scholar
  27. Vogel KG, Trotter JA (1987) The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Collagen Rel Res 7: 105–114Google Scholar
  28. Wallace DG, Thompson A (1983) Description of collagen fibril formation by a theory of polymer crystallization. Biopolymers 22: 1793–1881PubMedCrossRefGoogle Scholar
  29. Williams BR, Gelman RA, Poppke DC, Piez KA (1978) Collagen fibril formation. J Biol Chem 253: 6578–6585PubMedGoogle Scholar
  30. Wood GC, Keech MK (1960) The formation of fibrils from collagen solutions. Biochem J 75: 588–598PubMedGoogle Scholar
  31. Wotton SF, Duance V, Fryer PR (1988) Type IX collagen: a possible function in articular cartilage. FEBS Lett 234: 79–82PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • David J. S. Hulmes
    • 1
  • A. Paul Mould
    • 2
  • Karl E. Kadler
    • 3
  • John A. Chapman
    • 2
  • Darwin J. Prockop
    • 3
  1. 1.Department of BiochemistryUniversity of Edinburgh, George SquareEdinburghUK
  2. 2.Departments of Medical Biophysics/ Biochemistry & Molecular BiologyUniversity of ManchesterManchesterUK
  3. 3.Department of Biochemistry & Molecular BiologyJefferson Medical College, Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations