Skip to main content

Procollagen Processing Control of Type I Collagen Fibril Assembly

  • Conference paper
Cytoskeletal and Extracellular Proteins

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 3))

Abstract

Vertebrate collagens constitute a family of at least twelve genetic types that shows remarkable diversity in molecular structure and supramolecular assembly (Mayne & Burgeson, 1987). Types I, II and III collagens assemble in vivo to form fibrils of uniform diameter, near circular cross-section and with a characteristic axial periodicity of 65 to 67 nm (D). Fibrils in vivo are long (several µm) and diameters range from 8 nm to 500 nm, depending on collagen type, species, age and tissue of origin (Parry & Craig, 1984). The mechanisms that control fibril shape and diameter in vivo are poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi E, Hayashi, T (1986) In vitro formation of hybrid fibrils of type V collagen and type I collagen. Connect Tiss Res 14: 257–266

    Article  CAS  Google Scholar 

  • Berg RA, Birk DE, Silver FH (1986) Physical characterization of type I procollagen in solution: evidence that the propeptides limit self-assembly. Int J Biol Macromol 8: 177–182

    Article  CAS  Google Scholar 

  • Chandrasekhar S, Kleinman HK, Hassell JR, Martin GR, Termine JD, Trelstad RL (1984) Regulation of type I collagen fibril assembly by link proteins and proteoglycans. Collagen Rel Res 4: 323–338

    CAS  Google Scholar 

  • Farber S, Garg A, Birk DE, Silver FH (1986) Collagen fibrillogenesis in vitro: evidence for prenucleation and nucleation steps. Int J Biol Macromol 8: 37–42

    Article  CAS  Google Scholar 

  • Fessler LI, Timpl R, Fessler JH (1981) Assembly and processing of procollagen type III in chick embryo blood vessels. J Biol Chem 256: 2531–2537

    PubMed  CAS  Google Scholar 

  • Fleischmajer R, Perlish JS, Olsen BR (1987) The carboxylpropeptide of type I procollagen in skin fibrillogenesis. J Invest Dermatol 89: 212–215

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Bruns RR (1984) Another look at fibrillogenesis. In: Trelstad RL (ed) The role of the extracellular matrix in development. Alan R Liss, New York, p 479

    Google Scholar 

  • Halila R, Peltonen L (1986) Purification of human procollagen type III N-proteinase from placenta and preparation of antiserum. Biochem J 239: 47–52

    PubMed  CAS  Google Scholar 

  • Holmes DF, Capaldi MJ, Chapman JA (1986) Reconstitution of collagen fibrils in vitro; the assembly process depends on the initiation procedure. Int J Biol Macromol 8: 161–166

    Article  Google Scholar 

  • Hojima Y, van der Rest M, Prockop DJ (1985) Type I procollagen carboxyl-terminal proteinase from chick embryo tendons. J Biol Chem 260: 15996–16003

    PubMed  CAS  Google Scholar 

  • Hulmes DJS, Bruns RR, Gross J (1983) On the state of aggregation of newly secreted procollagen. Proc Nat Acad Sei USA 80: 388–392

    Article  CAS  Google Scholar 

  • Kadler KE, Hojima Y, Prockop DJ (1987) Assembly of collagen fibrils de novo by cleavage of type I pC-collagen with C-proteinase. J Biol Chem 262: 15696–15701

    PubMed  CAS  Google Scholar 

  • Kadler KE, Hojima Y, Prockop DJ (1988) Assembly of type I collagen fibrils de novo. J Biol Chem 263: 10517–10523

    PubMed  CAS  Google Scholar 

  • Kessler E, Adar R, Goldberg B, Niece R (1986) Partial purification and characterisation of a procollagen C-proteinase from the culture medium of mouse fibroblasts. Collagen Rel Res 6: 249–266

    CAS  Google Scholar 

  • Lapiere Ch M, Nusgens B, Pierard GE (1977) Interaction between collagen type I and III in conditioning bundles organisation. Connect Tiss Res 5: 21–29

    Article  CAS  Google Scholar 

  • Mayne R, Burgeson RE (1987) Structure and function of collagen types. Academic Press, New York London

    Google Scholar 

  • Miyahara M, Njieha FK, Prockop DJ (1982) Formation of collagen fibrils in vitro by cleavage of procollagen with procollagen proteinases. J Biol Chem 257: 8442–8448

    PubMed  CAS  Google Scholar 

  • Miyahara M, Bruckner P, Helle O, Prockop DJ (1983) Aggregation of a type I collagen precursor containing N-terminal propeptides. Collagen Rel Res 3: 279–293

    CAS  Google Scholar 

  • Mould AP, Hulmes DJS (1987) Surface-induced aggregation of type I procollagen. J Mol Biol 195: 543–553

    Article  PubMed  CAS  Google Scholar 

  • Na GC (1988) UV spectroscopic characterisation of type I collagen. Collagen Rel Res 8: 315–330

    CAS  Google Scholar 

  • Parry DAD, Craig AS (1984) Growth and development of collagen fibrils in connective tissue. In: Ruggeri A, Motta PM (eds) Ultrastructure of the connective tissue matrix. Martinus Nijhoff, Boston The Hague, p 34

    Google Scholar 

  • Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA (1979) The biosynthesis of collagen and its disorders. New Engl J Med 301:13–23, 77–85

    Google Scholar 

  • Prockop DJ, Kivirikko KI (1984) Heritable diseases of collagen. New Engl J Med 311: 376–386

    Article  PubMed  CAS  Google Scholar 

  • Tanzawa K, Berger J, Prockop DJ (1985) Type I procollagen N-proteinase from whole chick embryos. J Biol Chem 260: 120–1126

    Google Scholar 

  • Uitto J, Allan RE, Polak KL (1979) Conversion of type II procollagen to collagen. Eur J Biochem 99: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Veis A, Anesey J, Yuan L, Levy SJ (1973) Evidence for an amino-terminal extension in high molecular weight collagens from mature bovine skin. Proc Nat Acad Sci USA 70: 1464–1467

    Article  PubMed  CAS  Google Scholar 

  • Vogel KG, Trotter JA (1987) The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Collagen Rel Res 7: 105–114

    CAS  Google Scholar 

  • Wallace DG, Thompson A (1983) Description of collagen fibril formation by a theory of polymer crystallization. Biopolymers 22: 1793–1881

    Article  PubMed  CAS  Google Scholar 

  • Williams BR, Gelman RA, Poppke DC, Piez KA (1978) Collagen fibril formation. J Biol Chem 253: 6578–6585

    PubMed  CAS  Google Scholar 

  • Wood GC, Keech MK (1960) The formation of fibrils from collagen solutions. Biochem J 75: 588–598

    PubMed  CAS  Google Scholar 

  • Wotton SF, Duance V, Fryer PR (1988) Type IX collagen: a possible function in articular cartilage. FEBS Lett 234: 79–82

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hulmes, D.J.S., Mould, A.P., Kadler, K.E., Chapman, J.A., Prockop, D.J. (1989). Procollagen Processing Control of Type I Collagen Fibril Assembly. In: Aebi, U., Engel, J. (eds) Cytoskeletal and Extracellular Proteins. Springer Series in Biophysics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73925-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73925-5_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73927-9

  • Online ISBN: 978-3-642-73925-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics