Skip to main content

Structure and Assembly of Intermediate Filaments: Multi- Faceted, Myosin-like (But Non-Motile) Cytoskeletal Polymers

  • Conference paper
Cytoskeletal and Extracellular Proteins

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 3))

Abstract

Intermediate filament (IF) proteins, actin, and tubulin are the troika of the eukaryotic cytoskeleton, in that fibrous polymers of these three classes of protein abound in virtually all kinds of cells. However, as our knowledge of their molecular properties grows, it is becoming increasingly apparent that IF proteins (Steinert & Roop, 1988) differ in many respects from actin (Pollard & Cooper, 1986) and tubulin (Kirschner & Mitchison, 1986), but have much in common with another important and long-studied component of the cytoskeleton, albeit one that is somewhat less ubiquitous - myosin (Harrington & Rodgers, 1984; Warrick & Spudich, 1987). It is the purpose of this contribution to summarize some recent lines of evidence emerging from biophysical and molecular biological experiments concerning both static and dynamic properties of IF proteins; to examine how far their resemblance to myosin extends; and to explore its implications for the functions - still rather vaguely defined - that are exercised by IF in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi U, Fowler W E, Rew P. Sun T-T (1983) The fibrillar structure of keratin filaments unraveled. J Cell Biol 97: 1131–1143.

    Article  PubMed  CAS  Google Scholar 

  • Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate- type filaments. Nature(Lond) 323: 560–564.

    Article  CAS  Google Scholar 

  • Ahmadi B, Boston N M, Dobb M G. Speakman F T (1980) Possible four-chain repeating unit in the microfibril of wool. In: Parry D A D & Creamer L K (eds) Fibrous Proteins: Scientific, Industrial and Medical Aspects, vol 2. Academic Press. London, pp 161–166.

    Google Scholar 

  • Baker T S, Winkelmann D A (1986) Methodology for determining the three-dimensional structure of myosin SI from electron microscopy of orthogonal thin sections. Proc 44th Ann Mtg EMSA pp. 26–29. San Francisco Press, San Francisco.

    Google Scholar 

  • Bornstein T, Traub W (1979) The chemistry and biology of collagen. In: Neurath H & Hill R L (eds) The Proteins, vol 4. Academic Press, New York, pp 411–632.

    Google Scholar 

  • Conway J F, Parry DAD (1988) Intermediate filament structure 3: analysis of sequence homologies. Int J Biol Macromol 10: 79–98.

    Article  CAS  Google Scholar 

  • Engel A, Eichner R, Aebi U (1985) Polymorphism of reconstituted human epidermal keratin filaments: determination of their mass-per-length and width by scanning transmission electron microscopy ( STEM ). J Ultrastruc Res 90: 323–335.

    Google Scholar 

  • Fisher D Z, Chaudhury N, Blobel G (1986) cDNA sequencing of nuclear lamins A and C reveals primary and secondary structure homology to intermediate filament proteins. Proc Nat’l Acad Sci USA 83: 6450–6454.

    Google Scholar 

  • Fraser R D B, MacRae T P (1982) The fine structure of keratin fibers. In: Breuer M M (ed) Milton Harris: chemist, innovator and entrepreneur. American Chemical Society, pp 109–137.

    Google Scholar 

  • Fraser R D B, MacRae T P, Parry DAD, Suzuki E (1986) Intermediate filaments in α-keratins. Proc Natl Acad Sci USA 83: 1179–1183.

    Article  PubMed  CAS  Google Scholar 

  • Geisler N, Kaufmann E, Fischer S, Plessmann U, Weber K (1983) Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J 2: 1295–1302.

    PubMed  CAS  Google Scholar 

  • Geisler N, Fischer S. Vandekerckhove J, Plessmann U, Weber, K (1984) Hybrid character of a large neurofilament protein (NF-M): intermediate-type filament sequences followed by a long acidic carboxy-terminal extension. EMBO J 3: 2701–2706.

    Google Scholar 

  • Geisler N, Kaufmann E, Weber K (1985) Antiparallel orientation of the two double-stranded coiled-coils in the tetrameric protofilament unit in intermediate filaments. J Mol Biol 182: 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Griffin R G (1981) Solid-state nuclear magnetic resonance of lipid bilayers. Meth Enzymol 72: 108–174.

    Article  PubMed  CAS  Google Scholar 

  • Hanukoglu I, Fuchs E (1983) The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Cell 33: 915–924.

    Article  PubMed  CAS  Google Scholar 

  • Harrington W F, Rodgers M E (1984) Myosin. Ann Rev Biochem 53: 35–74.

    Article  CAS  Google Scholar 

  • Henderson D, Geisler N, Weber K (1982) A periodic ultrastructure in intermediate filaments. J Mol Biol 155: 173–176.

    Article  PubMed  CAS  Google Scholar 

  • Hisanaga S-I, Hirokawa N (1988) Structure of the peripheral domains of neurofilaments revealed by low-angle rotary shadowing. J Mol Biol 202: 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Ip W, Hartzer M K, Pang Y-Y S, Robson R M (1985) Assembly of vimentin and its implications concerning the structure of intermediate filaments. J Mol Biol 183: 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Ip W (1988) Modulation of desmin intermediate filament assembly by a monclonal antibody. J Cell Biol 106: 735–746.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann E, Weber K, Geisler N (1985) Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues. J Mol Biol 185: 733–742.

    Article  PubMed  CAS  Google Scholar 

  • Keniry M A, Gutowski H S, Oldfield E (1984) Surface dynamics of the integral membrane protein bacteriorhodopsin. Nature(Lond) 307: 383–386.

    Article  CAS  Google Scholar 

  • Kirschner M W, Mitchison T J (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45: 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Lasek R J, Phillips L, Katz M J, Autilio-Gambetti L (1985) Function and evolution of neurofilament proteins. Ann N Y Acad Sci 455: 462–478.

    Article  PubMed  CAS  Google Scholar 

  • Leszczynski J N, Rose G D (1986) Loops in globular proteins: a novel category of secondary structure. Science 234: 849–855.

    Article  PubMed  CAS  Google Scholar 

  • Mack J W, Torchia D A, Steinert P M (1988) Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments. Biochemistry(USA) 27: 5418–5426.

    Article  CAS  Google Scholar 

  • McKeon F D, Kirschner M W, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature(Lond) 319: 463–468.

    Article  CAS  Google Scholar 

  • McLachlan A D (1984) Structural implications of the myosin amino-acid sequence. Ann Rev Biophys Bioeng 13: 167–190.

    Article  CAS  Google Scholar 

  • Milam L, Erickson H P (1982) Visualization of a 21-nm axial periodicity in shadowed keratin intermediate filaments. J Cell Biol 94: 592–592.

    Article  PubMed  CAS  Google Scholar 

  • Parry DAD, Steven A C, Steinert P M (1985) The coiled-coil molecules of intermediate filaments consist of two parallel chains in exact axial register. Biochem Biophys Res Com 127: 1012–1018.

    Article  PubMed  CAS  Google Scholar 

  • Pollard T D, Cooper J A (1986) Actin and actin-binding proteins. Ann Rev Biochem 55: 987–1036.

    Article  PubMed  CAS  Google Scholar 

  • Potschka, M (1986) Structure of intermediate filaments. Biophys J 49: 129–130.

    Article  PubMed  CAS  Google Scholar 

  • Sauk J J, Krumweide M, Cocking-Johnson D, White J G (1984) Reconstitution of cytokeratin filaments in vitro: further evidence for the role of nonhelical peptides in filament assembly. J Cell Biol 99: 1590–1597.

    Article  PubMed  CAS  Google Scholar 

  • Steinert P M, Idler W W, Goldman R D (1980) Intermediate filaments of BHK-21 cells and bovine epidermal keratinocytes have similar ultrastructures and subunit domain structures. Proc Nafl Acad Sci USA 77: 4534–4538.

    Article  CAS  Google Scholar 

  • Steinert P M, Rice R H, Roop D R, Trus B L, Steven A C (1983) Complete amino-acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments. Nature(Lond) 302: 794–800.

    Article  CAS  Google Scholar 

  • Steinert P M, Steven A C (1985) Splitting hairs and other intermediate filaments. Nature(Lond) 316: 767.

    Article  CAS  Google Scholar 

  • Steinert P M, Steven A C, Roop D R (1985a) The molecular biology of intermediate filaments. Cell 42: 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Steinert P M, Parry DAD, Idler W W, Johnson L D, Steven A C, Roop D R (1985b) Amino acid sequences of mouse and human epidermal type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end-domains of keratin intermediate filament subunits. J Biol Chem 260: 7142–7149.

    PubMed  CAS  Google Scholar 

  • Steinert P M, Roop D R (1988) Molecular and cellular biology of intermediate filaments. Ann Rev Biochem 57: 593–625.

    Article  PubMed  CAS  Google Scholar 

  • Steven A C, Wall J S, Hainfeld J T, Steinert P M (1982) Structure of fibroblastic intermediate filaments: analysis by scanning transmission electron microscopy. Proc Nat’I Acad Sci USA 79: 3101: 3105.

    Google Scholar 

  • Steven A C, Hainfeld J T, Trus B L, Wall J S, Steinert P M (1983) Epidermal keratin filaments assembled in vitro have masses-per-unit-length that scale according to average subunit mass: structural basis for homologous packing of subunits in intermediate filaments. J Cell Biol 97: 1939–1944.

    Article  PubMed  CAS  Google Scholar 

  • Steven A C, Trus B L, Hainfeld J F, Wall J S, Steinert P M (1985) Conformity and diversity in the structures of intermediate filaments. Ann N Y Acad Sci 455: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Steven A C, Trus B L, Steinert P M (1987) What’s where in intermediate filaments? Proc 45th Ann Mtg EMSA pp 802–805. San Francisco Press, San Francisco.

    Google Scholar 

  • Torchia D A (1984) Solid-state NMR studies of protein internal dynamics. Ann Rev Biophys Bioeng 13: 125–144.

    Article  CAS  Google Scholar 

  • Woods E F, Inglis A S (1984) Organization of the coiled-coils in the wool microfibril. Int J Biol Macromol 6: 277–283.

    Article  CAS  Google Scholar 

  • Zhou X-M, Idler W W, Steven A C, Roop D R, Steinert P M (1988) The complete sequence of the human intermediate filament chain keratin 10: subdomainal divisions and model for folding of end-domain sequences. J Biol Chem - in the press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steven, A.C., Mack, J.W., Trus, B.L., Bisher, M.E., Steinert, P.M. (1989). Structure and Assembly of Intermediate Filaments: Multi- Faceted, Myosin-like (But Non-Motile) Cytoskeletal Polymers. In: Aebi, U., Engel, J. (eds) Cytoskeletal and Extracellular Proteins. Springer Series in Biophysics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73925-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73925-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73927-9

  • Online ISBN: 978-3-642-73925-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics