Skip to main content

Structure and Spatial Organisation of Intermediate Filament and Nuclear Lamin Molecules

  • Conference paper
Cytoskeletal and Extracellular Proteins

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 3))

Abstract

Intermediate filament structure has been investigated extensively and much is now known about the conformation of IF chains, their aggregation into two-stranded molecules, the modes of assembly of the molecules into four-chain structural units and the arrangement of units in the IF (Geisler and Weber, 1982; Hanukoglu and Fuchs, 1982; Crewther et al, 1983; Steinert et al, 1983,1984; Parry and Fraser, 1985; Steinert and Parry 1985, Parry et al, 1986; McKeon et al, 1986). This knowledge provides the basis for further experimentation and analysis and allows new insights to be presented here on the role of the conserved sequences in the rod domain, the antiparallel arrangement of IB segments and the flexibilities of the terminal domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi U, Cohn J, Buhle L and Gerace L (1986) The nuclear lamina is a mesh work of intermediate-type filaments. Nature (London) 323: 560–564

    Article  CAS  Google Scholar 

  • Ahmadi B and Speakman PT (1978) Suberimidate crosslinking shows that a rod-shaped, low-cystine, high-helix protein prepared by limited proteolysis of reduced wool has four protein chains. FEBS Lett 94: 365–367

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi B, Boston NM, Dobb MG and Speakman PT (1980) Possible four chain repeating unit in the microfibril of wool. In: Parry DAD and Creamer LK (eds) Fibrous Proteins: Scientific, Industrial and Medical Aspects, vol 2. Academic Press, London, pp 161–166

    Google Scholar 

  • Conway JF and Parry DAD (1988) Intermediate filament structure 3: Analysis of sequence homologies. Int J Biol Macromol 10: 79–98

    Article  CAS  Google Scholar 

  • Conway JF, Fräser RDB, MacRae TP and Parry DAD (1988) Protein chains in wool and epidermal keratin IF: Structural features and spatial arrangement. In: Rogers GE, Reis PJ, Ward KA and Marshall RC (eds) The Biology of Wool and Hair, Chapman and Hall, London and New York (in press)

    Google Scholar 

  • Crewther WG, Dowling LM, Steinert PM and Parry DAD (1983) Structure of intermediate filaments. Int J Biol Macromol 5: 267–274

    Article  CAS  Google Scholar 

  • Fraser RDB and MacRae TP (1971) Structure of a-keratin. Nature (London) 233: 138–140

    Article  CAS  Google Scholar 

  • Fraser RDB, MacRae TP and Suzuki E (1976) Structure of the α-keratin microfibril. J Mol Biol 108: 435–452

    Article  PubMed  CAS  Google Scholar 

  • Fraser RDB, MacRae TP, Parry DAD and Suzuki E (1986) Intermediate filaments in α-keratins. Proc Natl Acad Sci USA 83: 1179–1183

    Article  PubMed  CAS  Google Scholar 

  • Geisler N and Weber K (1982) The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J 1: 1649–1656

    CAS  Google Scholar 

  • Geisler N and Weber K (1988) Phosphorylation of desmin in vitro inhibits formation of intermediate filaments; identification of three kinase A sites in the aminoterminal head domain. EMBO J 7: 15–20

    CAS  Google Scholar 

  • Geisler N, Kaufmann E and Weber K (1982) Proteinchemical characterization of three structurally distinct domains along the protofilament unit of desmin 10 nm filaments. Cell 30: 277–286

    Article  PubMed  CAS  Google Scholar 

  • Geisler N, Kaufmann E and Weber K (1985) Antiparallel orientation of the two double-stranded coiled-coils in the tetrameric protofilament unit of intermediate filaments. J Mol Biol 182: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Goldman AE, Maul G, Steinert PM, Yang HY and Goldman RD (1986) Keratin-like proteins that coisolate with intermediate filaments of BHK-21 cells are nuclear lamins 83: 3839–3843

    CAS  Google Scholar 

  • Hanukoglu I and Fuchs E (1982) The cDNA sequence of a human epidermal keratin: Divergence of sequence but conservation of structure among intermediate filament proteins. Cell 31: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Inagaki M, Nishi Y, Nishizawa K, Matsuyama M and Sato C (1987) Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature (London) 328: 649–652

    Article  CAS  Google Scholar 

  • Inagaki M, Gonda Y, Matsuyama M, Nishizawa K, Nishi Y and Sato C (1988) Intermediate filament reconstitution in vitro. The role of phosphorylation on the assembly-disassembly of desmin. J Biol Chem 263: 5970–5978

    PubMed  CAS  Google Scholar 

  • Karplus PA and Schulz GE (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72: 212–213

    Article  CAS  Google Scholar 

  • Kaufmann E, Weber K and Geisler N (1985) Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues. J Mol Biol 185: 733–742

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E (1982) Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins. Ann Rev Biochem 51: 219–250

    Article  PubMed  CAS  Google Scholar 

  • McKeon FD, Kirschner MW and Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature (London) 319: 463–468

    Article  CAS  Google Scholar 

  • McLachlan AD and Stewart M (1982) Periodic charge distribution in the intermediate filament proteins desmin and vimentin. J Mol Biol 162: 693–698

    Article  PubMed  CAS  Google Scholar 

  • Parry DAD (1975) Double helix of tropomyosin. Nature (London) 256: 346–347

    Article  CAS  Google Scholar 

  • Parry DAD and Fraser RDB (1985) Intermediate filament structure 1. Analysis of IF protein sequence data. Int J Biol Macromol 7: 203–213

    Article  CAS  Google Scholar 

  • Parry DAD, Crewther WG, Fraser RDB and MacRae TP (1977) Structure of α-keratin: Structural implication of the amino acid sequences of the Type I and Type II chain segments. J Mol Biol 113: 449–454

    Article  PubMed  CAS  Google Scholar 

  • Parry DAD, Steven AC and Steinert PM (1985) The coiled-coil molecules of intermediate filaments consist of two parallel chains in exact axial register. Biochem Biophys Res Commun 127: 1012–1018

    Article  PubMed  CAS  Google Scholar 

  • Parry DAD, Conway JF and Steinert PM (1986) Structural studies on lamin: Similarities and differences between lamin and intermediate filament proteins. Biochem J 238: 305–308

    PubMed  CAS  Google Scholar 

  • Parry DAD, Conway JF, Goldman AE, Goldman RD and Steinert PM (1987) Nuclear lamin proteins: Common structures for paracrystalline, filamentous and lattice forms. Int J Biol Macromol 9: 137–145

    Article  CAS  Google Scholar 

  • Quinlan RA and Franke WW (1982) Heteropolymer filaments of vimentin and desmin in vascular smooth muscle tissue and cultured baby hamster kidney cells demonstrated by chemical crosslinking. Proc Natl Acad Sci USA 79: 3452–3456

    Article  PubMed  CAS  Google Scholar 

  • Quinlan RA and Franke WW (1983) Molecular interactions in intermediate-sized filaments revealed by chemical cross-linking. Eur J Biochem 132: 477–484

    Article  PubMed  CAS  Google Scholar 

  • Quinlan RA, Cohlberg JA, Schiller DL, Hatzfeld M and Franke WW (1984) Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes and hepatoma cells. J Mol Biol 178: 365–388

    Article  PubMed  CAS  Google Scholar 

  • Sparrow LG, Dowling LM, Loke VY and Strike PM (1988) Amino acid sequences of wool keratin IF proteins. In: Rogers GE, Reis PJ, Ward KA and Marshall RC (eds) The Biology of Wool and Hair, Chapman and Hall, London and New York (in press)

    Google Scholar 

  • Steinert PM and Parry DAD (1985) Intermediate filaments: Conformity and diversity of expression and structure. Ann Rev Cell Biol 1: 41–65

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM, Rice RH, Roop DR, Trus BL and Steven AC (1983) Complete amino acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments. Nature (London) 302: 794–800

    Article  CAS  Google Scholar 

  • Steinert PM, Parry DAD, Racoosin EL, Idler WW, Steven AC, Trus BL and Roop DR (1984) The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60 000 Da: Analysis of sequence differences between type I and type II keratins. Proc Natl Acad Sci USA 81: 5709–5713

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM, Parry DAD, Idler WW, Johnson LD, Steven AC and Roop DR (1985) Amino acid sequences of mouse and human epidermal Type II keratins of Mr 67 000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits. J Biol Chem 260: 7142–7149

    PubMed  CAS  Google Scholar 

  • Steven AC, Wall J, Hainfeld J and Steinert PM (1982) Structure of fibroblastic intermediate filaments: Analysis by scanning transmission electron microscopy. Proc Nad Acad Sci USA 79: 3101–3105

    Article  CAS  Google Scholar 

  • Steven AC, Hainfeld JF, Trus BL, Wall JS and Steinert PM (1983a) Epidermal keratin filaments assembled in vitro have masses-per-unit-length that scale according to average subunit mass: Structural basis for homologous packing of subunits in intermediate filaments. J Cell Biol 97: 1939–1944

    Article  PubMed  CAS  Google Scholar 

  • Steven AC, Hainfeld JF, Trus BL, Wall JS and Steinert PM (1983b) The distribution of mass in heteropolymer intermediate filaments assembled in vitro. J Biol Chem 258: 8323 - 8329

    PubMed  CAS  Google Scholar 

  • Suzuki E, Crewther WG, Fraser RDB, MacRae TP and McKern NM (1973) X-ray diffraction and infrared studies of an a-helical fragment from α-keratin. J Mol Biol 73: 275–278

    Article  PubMed  CAS  Google Scholar 

  • Traub P and Vorgias CE (1983) Involvement of the N-terminal polypeptide of vimentin in the formation of intermediate filaments. J Cell Sci 63: 43–67

    PubMed  CAS  Google Scholar 

  • Wais-Steider C, Eagles PAM, Gilbert DS and Hopkins J (1983) Structural similarities and differences amongst neurofilaments. J Mol Biol 165: 393 - 400

    Article  PubMed  CAS  Google Scholar 

  • Woods EF and Inglis AS (1984) Organization of the coiled-coils in the wool microfibril. Int J Biol Macromol 6: 277–283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conway, J.F., Parry, D.A.D. (1989). Structure and Spatial Organisation of Intermediate Filament and Nuclear Lamin Molecules. In: Aebi, U., Engel, J. (eds) Cytoskeletal and Extracellular Proteins. Springer Series in Biophysics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73925-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73925-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73927-9

  • Online ISBN: 978-3-642-73925-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics