Skip to main content

The Neuronal Basis of Salt Sensitivity

  • Conference paper
Salt and Hypertension

Abstract

In genetically predisposed individuals, dietary salt loading causes the development or exacerbation of hypertension and increases sympathetic nervous system activity (OPARIL 1984). Approximately 50% of patients with essential hypertension are salt sensitive, i.e., they manifest a significant (>10%) increase in blood pressure in response to a high salt diet (Kawaskai et al. 1978; Fujita et al. 1980). Patients with salt sensitive essential hypertension have been shown to have inappropriately high plasma norepinephrine levels in relation to their urinary sodium excretion during periods of high salt intake (Campese et al. 1982). Thus, salt sensitive hypertensives fail to suppress plasma norepinephrine appropriately following ingestion of a highsalt diet. Further, they display significantly greater increments in plasma norepinephrine during upright posture than salt resistant hypertensives or normotensive control subjects (Campese et al. 1982).

This work has been supported in part by the National Heart, Lung, and Blood Institute Grants HL-22544, HL-36390, HL-35051, HL-39041, HL-37722, Grant-in-Aid from the American Heart Association, Alabama Affiliate, and by a Grant from the National Dairy Board and administered in cooperation with the National Dairy Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki K, Yamori Y, Ooshima A, Okamoto K (1972) Effects of high or low sodium intake in spontaneously hypertensive rats. Jpn Circ J 36:539–545

    Article  PubMed  CAS  Google Scholar 

  • Barrett RJ, Kau ST (1986) Myocardial and vascular actions of amiloride in spontaneously hypertensive rats. J Pharmacol Exp Ther 239:365–374

    PubMed  CAS  Google Scholar 

  • Barsanti JA, Pillsbury HR III, Freis ED (1971) Enhanced salt toxicity in the spontaneously hypertensive rat. Proc Soc Exp Biol Med 136:565–568

    PubMed  CAS  Google Scholar 

  • Benarroch EE, Balda MS, Finkielman S, Nahmoid VF (1983) Neurogenic hypertension after depletion of norepinephrine in anterior hypothalamus induced by 6-hydroxydopamine administration into the ventral pons: role of serotonin. Neuropharmacology 22:29–34

    Article  PubMed  CAS  Google Scholar 

  • Benos DJ (1982) Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol 242 (Cell Physiol):C131-C145

    PubMed  CAS  Google Scholar 

  • Benos DJ (1988) Amiloride: chemistry, kinetics, structural activity relationship. In: Sergio Grinstein (ed) Na+/H+ Exchange. CRC, Boca Raton

    Google Scholar 

  • Brodie BB, Costa E, Dlabac A, Neff NH, Smookler HH (1966) Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther 154:493–498

    PubMed  CAS  Google Scholar 

  • Campese VM, Romoff MS, Levitan D, Saglikes Y, Friedler RM, Massry SG (1982) Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int 21:371–378

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Meng Qc, Wyss JM, Jin H, Oparil S (1988) High NaCl diet reduces hypothalamic norepinephrine turnover in hypertensive rats. Hypertension 11:55–62

    PubMed  CAS  Google Scholar 

  • Chen YF, Yang CH, Jiri H, Wyss JM, Cragoe EJ, Oparil S (1988) Exaggerated depressor response to b-iodoamiloride in NaCl-sensitive spontaneously hypertensive rats. Am J Med Sci 296:78–83

    Article  PubMed  CAS  Google Scholar 

  • DeMendonca M, Grichois ML, Dagher G, Aragon-Birloues I, Montenay-Garestier T, Devynck MA, Meyer P (1984) Cell membrane changes after in vivo acute Na+ load in normotensive and spontaneously hypertensive rats. Clin Exp Hypertens [A]6(9): 1559–1574

    Article  CAS  Google Scholar 

  • Dietz R, Schomig A, Rascher W, Strasser R, Kubler W (1980) Enhanced sympathetic activity caused by salt loading in spontaneously hypertensive rats. Clin Sci 59:171s-173s

    PubMed  CAS  Google Scholar 

  • Falkner B, Onesti G, Angelakos E (1981) Effect of Nl loading on the cardiovascular response to stress in adolescents. Hypertension 3:II–195-II–199

    Google Scholar 

  • Feig PU, D’Oacchio MA, Boylan JW (1987) Lymphocyte membrane sodium-proton exchange in spontaneously hypertensive rats. Hypertension 9:282–288

    PubMed  CAS  Google Scholar 

  • Friedman SM, Friedman CL (1976) Cell permeability, sodium transport, and the hypertensive process in the rat. Circ Res 39:433–441

    PubMed  CAS  Google Scholar 

  • Fujita T, Henry WL, Bartter FC, Lake CR, Delea CS (1980) Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med 69:334–344

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW, Ho PP, Matsumoto C, Clemens JA (1977) New inhibitors of dopamine β-hydroxylase. Adv Enzyme Regul 15:267–281

    Article  CAS  Google Scholar 

  • Fuller RW, Snoddy HD, Perry KW (1982) Dopamine accumulation after dopamine β-hydroxylase inhibition in rat heart as an index of norepinephrine turnover. Life Sci 31:563–570

    Article  PubMed  CAS  Google Scholar 

  • Gavras H (1986) How does salt raise blood pressure? A hypothesis. Hypertension 8:83–88

    PubMed  CAS  Google Scholar 

  • Haddy FJ, Pamnani MB, Swindall BT, Johnson J, Cragoe EJ (1985) Sodium channel blockers are vasodilators as well as natriuretic and diuretic agents. Hypertension 7(I):I-121-I-126

    CAS  Google Scholar 

  • Heagerty AM, Riozzi A, Brand SC, Bing RF, Thurston H, Swales JD (1986) Membrane transport of ions in hypertension: A review. Scand J Clin Invest 180:54–64

    CAS  Google Scholar 

  • Kawaskai T, Delea CS, Bartter FC, Smith H (1978) The effect of high-sodium and low-sodium intake on blood pressure and other related variables in human subjects with idiopathic hypertension. Am J Med 64:193–198

    Article  Google Scholar 

  • Klangkalya B, Oparil S, Wyss JM (1987) NaCl loading upregulates α2 adrenoceptors in the anterior hypothalamic area of SHR. Circulation 76 [Suppl IV]:IV-346

    Google Scholar 

  • Klangkalya B, Sripairojthikoon W, Oparil S, Wyss JM (1988) High Nl diets increase anterior hypothalamic α2 adrenoceptors in SHR. Brain Res 451:71–84

    Article  Google Scholar 

  • Koepke JP, Jones S, Dona GF (1988) Sodium responsiveness of central α2-adrenergic receptors in spontaneously hypertensive rats. Hypertension 11:326–333

    PubMed  CAS  Google Scholar 

  • Light KC, Koepke JP, Obrist PA, Willis PW IV (1983) Psychological stress induces sodium and fluid retention in men at high risk for hypertension. Science 220:429–431

    Article  PubMed  CAS  Google Scholar 

  • Louis WJ, Tabei R, Spector S (1971) Effects of sodium intake on inherited hypertension in the rat. Lancet 2:1283–1286

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell ME, Cragoe EJ, Villereal ML (1983) Inhibition of Na+ influx and DNA sythesis in human fibroblasts and neuroblastoma-glioma hybrid cells by amiloride analogs. J Pharmacol Exp Ther 226:368–372

    PubMed  Google Scholar 

  • Oparil S (1984) Sodium, the nervous system and hypertension. In: Hunt JC, Dreifus LS, Dustan HP, Frohlich ED, Gifford RW Jr, Kaplan NM, Maxwell MM (eds) Dialogues in hypertension. Hypertension update II. Health Learning Systems, Lyndhurst pp 15–24

    Google Scholar 

  • Oparil S, Meng QC, Chen YF, Yang RH, Jin H, Wyss JM (1989) Genetic basis of NaCl-sensitive hypertension. J Cardio vase Pharmaca 12 (Suppl 3): in press

    Google Scholar 

  • Oparil S, Chen YF, Meng QC, Yang RH, Jin H, Wyss JM (1988) The neutral basis of salt sensitivity in therat: Altered hypothalamic function. Am J Med Sci 295:360–369

    Article  PubMed  CAS  Google Scholar 

  • Pamnani MB, Haddy FJ, Bryant HJ, Swindall BT, Horn GJ, Johnston J, Cragoe EJ (1986) Effect of 6-iodo-amiloride, a sodium channel blocker, on cardiovascular parameters in spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens 4(3):S491-S493

    CAS  Google Scholar 

  • Postnov YV, Orlov SN (1984) Editorial review: cell membrane alteration as a source of primary hypertension. J Hypertens 2:1–6

    Article  PubMed  CAS  Google Scholar 

  • Spripairojthikoon W, Oparil S, Wyss JM (1988) Upregulation of renal α2 adrenoceptors in NaCl loaded SHR is not related to renal nerve activity. Soc Neurosci Abstr 13(part 1):744

    Google Scholar 

  • Sutter MC (1985) Ionic permeability and blood pressure Can J Physiol Pharmacol 63:375–379

    CAS  Google Scholar 

  • Tamura H, Kino M, Tokushige A, Searle BM, Aviv A (1985) Increased membrane permeability of skin fibroblasts from the spontaneously hypertensive rat. Hypertension 7:300–305

    PubMed  CAS  Google Scholar 

  • Winternitz SR, Oparil S (1982) Sodium-neural interactions in the development of spontaneous hypertension. Clin Exp Hypertens [A]4:751–760

    Article  CAS  Google Scholar 

  • Winternitz SR, Wyss J, Meadows JR, Oparil S (1982) Increased noradrenaline content of hypothalamic nuclei in association with worsening of hypertension after high sodium intake in the young spontaneously hypertensive rat. Clin Sci Mol Med 63:339s-342s

    Google Scholar 

  • Wyss JM, Chen YF, Jin H, Gist R, Oparil S (1987) Spontaneously hypertensive rats exhibit reduced hypothalamic noradrenergic input following NaCl loading. Hypertension 10:313–320

    PubMed  CAS  Google Scholar 

  • Wyss JM, Yang R, Jin H, Oparil S (1987) Increased responsiveness of hypothalamic α2 adrenoceptors in SHR on high NaCl diets (Submitted)

    Google Scholar 

  • Yang R, Jin H, Oparil S, Wyss JM (1987) Stimulation of anterior hypothalamic area α2 andrenoceptors results in a greater depressor response in SHR-S on a diet containing 8% compared to 1% NaCl. Fed Proc 46:1457

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oparil, S. et al. (1989). The Neuronal Basis of Salt Sensitivity. In: Rettig, R., Ganten, D., Luft, F.C. (eds) Salt and Hypertension. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73917-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73917-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73919-4

  • Online ISBN: 978-3-642-73917-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics