The Neuronal Basis of Salt Sensitivity

  • S. Oparil
  • Y.-F. Chen
  • R.-H. Yang
  • H. Jin
  • Q. C. Meng
  • E. J. Cragoe
  • J. M. Wyss

Abstract

In genetically predisposed individuals, dietary salt loading causes the development or exacerbation of hypertension and increases sympathetic nervous system activity (OPARIL 1984). Approximately 50% of patients with essential hypertension are salt sensitive, i.e., they manifest a significant (>10%) increase in blood pressure in response to a high salt diet (Kawaskai et al. 1978; Fujita et al. 1980). Patients with salt sensitive essential hypertension have been shown to have inappropriately high plasma norepinephrine levels in relation to their urinary sodium excretion during periods of high salt intake (Campese et al. 1982). Thus, salt sensitive hypertensives fail to suppress plasma norepinephrine appropriately following ingestion of a highsalt diet. Further, they display significantly greater increments in plasma norepinephrine during upright posture than salt resistant hypertensives or normotensive control subjects (Campese et al. 1982).

Keywords

Permeability Toxicity Dopamine Serotonin Norepinephrine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki K, Yamori Y, Ooshima A, Okamoto K (1972) Effects of high or low sodium intake in spontaneously hypertensive rats. Jpn Circ J 36:539–545PubMedCrossRefGoogle Scholar
  2. Barrett RJ, Kau ST (1986) Myocardial and vascular actions of amiloride in spontaneously hypertensive rats. J Pharmacol Exp Ther 239:365–374PubMedGoogle Scholar
  3. Barsanti JA, Pillsbury HR III, Freis ED (1971) Enhanced salt toxicity in the spontaneously hypertensive rat. Proc Soc Exp Biol Med 136:565–568PubMedGoogle Scholar
  4. Benarroch EE, Balda MS, Finkielman S, Nahmoid VF (1983) Neurogenic hypertension after depletion of norepinephrine in anterior hypothalamus induced by 6-hydroxydopamine administration into the ventral pons: role of serotonin. Neuropharmacology 22:29–34PubMedCrossRefGoogle Scholar
  5. Benos DJ (1982) Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol 242 (Cell Physiol):C131-C145PubMedGoogle Scholar
  6. Benos DJ (1988) Amiloride: chemistry, kinetics, structural activity relationship. In: Sergio Grinstein (ed) Na+/H+ Exchange. CRC, Boca RatonGoogle Scholar
  7. Brodie BB, Costa E, Dlabac A, Neff NH, Smookler HH (1966) Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther 154:493–498PubMedGoogle Scholar
  8. Campese VM, Romoff MS, Levitan D, Saglikes Y, Friedler RM, Massry SG (1982) Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int 21:371–378PubMedCrossRefGoogle Scholar
  9. Chen YF, Meng Qc, Wyss JM, Jin H, Oparil S (1988) High NaCl diet reduces hypothalamic norepinephrine turnover in hypertensive rats. Hypertension 11:55–62PubMedGoogle Scholar
  10. Chen YF, Yang CH, Jiri H, Wyss JM, Cragoe EJ, Oparil S (1988) Exaggerated depressor response to b-iodoamiloride in NaCl-sensitive spontaneously hypertensive rats. Am J Med Sci 296:78–83PubMedCrossRefGoogle Scholar
  11. DeMendonca M, Grichois ML, Dagher G, Aragon-Birloues I, Montenay-Garestier T, Devynck MA, Meyer P (1984) Cell membrane changes after in vivo acute Na+ load in normotensive and spontaneously hypertensive rats. Clin Exp Hypertens [A]6(9): 1559–1574CrossRefGoogle Scholar
  12. Dietz R, Schomig A, Rascher W, Strasser R, Kubler W (1980) Enhanced sympathetic activity caused by salt loading in spontaneously hypertensive rats. Clin Sci 59:171s-173sPubMedGoogle Scholar
  13. Falkner B, Onesti G, Angelakos E (1981) Effect of Nl loading on the cardiovascular response to stress in adolescents. Hypertension 3:II–195-II–199Google Scholar
  14. Feig PU, D’Oacchio MA, Boylan JW (1987) Lymphocyte membrane sodium-proton exchange in spontaneously hypertensive rats. Hypertension 9:282–288PubMedGoogle Scholar
  15. Friedman SM, Friedman CL (1976) Cell permeability, sodium transport, and the hypertensive process in the rat. Circ Res 39:433–441PubMedGoogle Scholar
  16. Fujita T, Henry WL, Bartter FC, Lake CR, Delea CS (1980) Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med 69:334–344PubMedCrossRefGoogle Scholar
  17. Fuller RW, Ho PP, Matsumoto C, Clemens JA (1977) New inhibitors of dopamine β-hydroxylase. Adv Enzyme Regul 15:267–281CrossRefGoogle Scholar
  18. Fuller RW, Snoddy HD, Perry KW (1982) Dopamine accumulation after dopamine β-hydroxylase inhibition in rat heart as an index of norepinephrine turnover. Life Sci 31:563–570PubMedCrossRefGoogle Scholar
  19. Gavras H (1986) How does salt raise blood pressure? A hypothesis. Hypertension 8:83–88PubMedGoogle Scholar
  20. Haddy FJ, Pamnani MB, Swindall BT, Johnson J, Cragoe EJ (1985) Sodium channel blockers are vasodilators as well as natriuretic and diuretic agents. Hypertension 7(I):I-121-I-126Google Scholar
  21. Heagerty AM, Riozzi A, Brand SC, Bing RF, Thurston H, Swales JD (1986) Membrane transport of ions in hypertension: A review. Scand J Clin Invest 180:54–64Google Scholar
  22. Kawaskai T, Delea CS, Bartter FC, Smith H (1978) The effect of high-sodium and low-sodium intake on blood pressure and other related variables in human subjects with idiopathic hypertension. Am J Med 64:193–198CrossRefGoogle Scholar
  23. Klangkalya B, Oparil S, Wyss JM (1987) NaCl loading upregulates α2 adrenoceptors in the anterior hypothalamic area of SHR. Circulation 76 [Suppl IV]:IV-346Google Scholar
  24. Klangkalya B, Sripairojthikoon W, Oparil S, Wyss JM (1988) High Nl diets increase anterior hypothalamic α2 adrenoceptors in SHR. Brain Res 451:71–84CrossRefGoogle Scholar
  25. Koepke JP, Jones S, Dona GF (1988) Sodium responsiveness of central α2-adrenergic receptors in spontaneously hypertensive rats. Hypertension 11:326–333PubMedGoogle Scholar
  26. Light KC, Koepke JP, Obrist PA, Willis PW IV (1983) Psychological stress induces sodium and fluid retention in men at high risk for hypertension. Science 220:429–431PubMedCrossRefGoogle Scholar
  27. Louis WJ, Tabei R, Spector S (1971) Effects of sodium intake on inherited hypertension in the rat. Lancet 2:1283–1286PubMedCrossRefGoogle Scholar
  28. O’Donnell ME, Cragoe EJ, Villereal ML (1983) Inhibition of Na+ influx and DNA sythesis in human fibroblasts and neuroblastoma-glioma hybrid cells by amiloride analogs. J Pharmacol Exp Ther 226:368–372PubMedGoogle Scholar
  29. Oparil S (1984) Sodium, the nervous system and hypertension. In: Hunt JC, Dreifus LS, Dustan HP, Frohlich ED, Gifford RW Jr, Kaplan NM, Maxwell MM (eds) Dialogues in hypertension. Hypertension update II. Health Learning Systems, Lyndhurst pp 15–24Google Scholar
  30. Oparil S, Meng QC, Chen YF, Yang RH, Jin H, Wyss JM (1989) Genetic basis of NaCl-sensitive hypertension. J Cardio vase Pharmaca 12 (Suppl 3): in pressGoogle Scholar
  31. Oparil S, Chen YF, Meng QC, Yang RH, Jin H, Wyss JM (1988) The neutral basis of salt sensitivity in therat: Altered hypothalamic function. Am J Med Sci 295:360–369PubMedCrossRefGoogle Scholar
  32. Pamnani MB, Haddy FJ, Bryant HJ, Swindall BT, Horn GJ, Johnston J, Cragoe EJ (1986) Effect of 6-iodo-amiloride, a sodium channel blocker, on cardiovascular parameters in spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens 4(3):S491-S493Google Scholar
  33. Postnov YV, Orlov SN (1984) Editorial review: cell membrane alteration as a source of primary hypertension. J Hypertens 2:1–6PubMedCrossRefGoogle Scholar
  34. Spripairojthikoon W, Oparil S, Wyss JM (1988) Upregulation of renal α2 adrenoceptors in NaCl loaded SHR is not related to renal nerve activity. Soc Neurosci Abstr 13(part 1):744Google Scholar
  35. Sutter MC (1985) Ionic permeability and blood pressure Can J Physiol Pharmacol 63:375–379Google Scholar
  36. Tamura H, Kino M, Tokushige A, Searle BM, Aviv A (1985) Increased membrane permeability of skin fibroblasts from the spontaneously hypertensive rat. Hypertension 7:300–305PubMedGoogle Scholar
  37. Winternitz SR, Oparil S (1982) Sodium-neural interactions in the development of spontaneous hypertension. Clin Exp Hypertens [A]4:751–760CrossRefGoogle Scholar
  38. Winternitz SR, Wyss J, Meadows JR, Oparil S (1982) Increased noradrenaline content of hypothalamic nuclei in association with worsening of hypertension after high sodium intake in the young spontaneously hypertensive rat. Clin Sci Mol Med 63:339s-342sGoogle Scholar
  39. Wyss JM, Chen YF, Jin H, Gist R, Oparil S (1987) Spontaneously hypertensive rats exhibit reduced hypothalamic noradrenergic input following NaCl loading. Hypertension 10:313–320PubMedGoogle Scholar
  40. Wyss JM, Yang R, Jin H, Oparil S (1987) Increased responsiveness of hypothalamic α2 adrenoceptors in SHR on high NaCl diets (Submitted)Google Scholar
  41. Yang R, Jin H, Oparil S, Wyss JM (1987) Stimulation of anterior hypothalamic area α2 andrenoceptors results in a greater depressor response in SHR-S on a diet containing 8% compared to 1% NaCl. Fed Proc 46:1457Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • S. Oparil
  • Y.-F. Chen
  • R.-H. Yang
  • H. Jin
  • Q. C. Meng
  • E. J. Cragoe
  • J. M. Wyss

There are no affiliations available

Personalised recommendations