Anticonvulsant Properties of Dihydropyridine Calcium Antagonists

  • F. B. Meyer
  • R. E. Anderson
  • T. M. SundtJr.
Part of the Bayer AG Centenary Symposium book series (BAYER)


In the past several years a primary thrust of our research effort has been directed toward evaluating the anticonvulsant properties of dihydropyridine Ca2+ antagonists.


Status Epilepticus Seizure Activity Kainic Acid Seizure Discharge Anticonvulsant Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ascioti C, De Sarro GB, Meldrum BS, Nistico G (1986) Calcium entry blockers as anticonvulsants in DBAl2 mice. Br J Pharmacol 88:379Google Scholar
  2. 2.
    Atwood HL, Lnenicka GA (1986) Structure and function in synapses: emerging concepts. Trend Neurosci 9:248–250CrossRefGoogle Scholar
  3. 3.
    Baky S (1985) Nicardipine hydrochloride. In: Scriabine A (ed) New drugs annual: cardiovascular drugs. Raven Press, New York pp 153–172Google Scholar
  4. 4.
    Bellemann P, Schade A, Towart R (1983) Dihydropyridine receptor in rat brain labelled with H3-nimodipine. Proc Natl Acad Sci USA 80:2356–2360PubMedCrossRefGoogle Scholar
  5. 5.
    Ben-Ari Y, Lagowska J, Tremblay E, Le GalLa Salle G (1979) A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures. Brain Res 163:176–179PubMedCrossRefGoogle Scholar
  6. 6.
    Ben-Ari Y, Tremblay E, Ottersen OP, Meldrum BS (1980) The role of epileptic activity in hippocampal and remote cerebral lesions induced by kainic acid. Brain Res 191:79–97PubMedCrossRefGoogle Scholar
  7. 7.
    Bingmann D, Speckmann E-J (1985) Calcium antagonists flunarizine and verapamil depress ictal activity in neurons of hippocampal slices. J Neurol 232:259Google Scholar
  8. 8.
    Binnie CD, de Beukelaar F, Meijer JWA, Overweg MJ, Wauquier A, van Wieringen A (1985) Open dose ranging trial of flunarizine as add-on therapy in epilepsy. Epilepsia 26: 424–428PubMedCrossRefGoogle Scholar
  9. 9.
    Bolger GT, Weissman BA, Bacher J, et al. (In Press) Calcium antagonist binding in cat brain tolerant to electroconvulsive shock. Pharmacol Biochem BehavGoogle Scholar
  10. 10.
    Bolger GT, Weissman BA, Skolnick P (1984) The behavioral effects of the calcium channel agonist Bay K8644 in the mouse: antagonism by the calcium antagonist nifedipine. NaunynSchmiedeberg Arch Pharmacol 328:373–377CrossRefGoogle Scholar
  11. 11.
    Browing MD, Huganir R, Greengard P (1985) Protein phosphorylation and neuronal function. J Neurochem 45:11–23CrossRefGoogle Scholar
  12. 12.
    Brown DA, Griffith WH (1983) Calcium activated outward current in voltage clamped hippocampal neurons of the guinea pig. J Physiol (Lond) 337:287–301Google Scholar
  13. 13.
    Brown DA, Griffith WH (1983) Persistent slow inward current in voltage clamped hippocampal neurons of the guinea pig. J Physiol (Lond) 337:303–320Google Scholar
  14. 14.
    Chapman AG (1981) Free fatty acid release and metabolism of adenosine and cyclic nucleotides during prolonged seizures. In: Morselli PL, Lloyd KG, Loscher W, Meldrum BS (eds) Neurotransmitters, Seizures, and Epilepsy, Raven Press, New York pp 165–173Google Scholar
  15. 15.
    Cortes R, Supavilai P, Karobath M, Palacios JM (1984) Calcium antagonist binding sites in the rat brain: quantiative autoradiographic mapping using the 1,4-dihydropyridines H3-PN200-110 and H3-py 108-068. J Neural Transmission 60:169–197CrossRefGoogle Scholar
  16. 16.
    Croucher MJ, Collins JF, Meldrum BS (1982) Anticonvulsant action of excitatory amino acid antagonists. Science 216:899–901PubMedCrossRefGoogle Scholar
  17. 17.
    Curtis DR, Watjkins JC (1963) Acidic amino acids with strong excitatory actions on mammalian neurons. J Physiol 160:1–14Google Scholar
  18. 18.
    DeLorenzo RJ (1982) Calmodulin in neurotransmitter release and synaptic function. Fed Proc 41:2265–2272PubMedGoogle Scholar
  19. 19.
    DeLorenzo RJ (1984) Calmodulin systems in neuronal excitability: a molecular approach to epilepsy. Ann Neurol 16 Suppl S104–114CrossRefGoogle Scholar
  20. 20.
    Deisz RA, Prince DA (1987) Effect of D890 on membrane properties of neocortical neurons. Brain Res 422:63–73PubMedCrossRefGoogle Scholar
  21. 21.
    Dolin SJ, Little HJ (1986) The dihydropyridine nitrendipine prevents nitrous oxide withdrawal seizures in mice. Br J Addiction 81:708Google Scholar
  22. 22.
    Desmedt CKL, Niemegeers CJE, Janssen PAJ (1975) Anticonvulsant properties of cinnarizine and flunarizine in rats and mice. Arzneimittelforsch 25:1408–1413PubMedGoogle Scholar
  23. 23.
    Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarizations of embryonic chick sensory neurons. J Physiol (Lond) 317:519–535Google Scholar
  24. 24.
    Dunwiddie TV, Werth J (1982) Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther 220:70–76PubMedGoogle Scholar
  25. 25.
    Eckert R, Chad IE (1984) Inactivation of Ca channel. Prog Biophys Bioi 44:215–267CrossRefGoogle Scholar
  26. 26.
    Evans MC, Griffiths T, Meldrum BS (1984) Kainic acid seizures and the reversibility of calcium loading in vulnerable neurons in the hippocampus. Neuropath and Appl Neurobiol 10:285–302CrossRefGoogle Scholar
  27. 27.
    Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res Rev 7:103–164CrossRefGoogle Scholar
  28. 28.
    Godfraind T, Miller R, Wibo M (1986) Calcium antagonism and calcium entry blockade. Pharmacological Reviews 38:321–416PubMedGoogle Scholar
  29. 29.
    Greenberg DA, Cooper EC, Carpenter CC (1984) Phenytoin interacts with calcium channels in brain membranes. Ann Neurol 16:616–617PubMedCrossRefGoogle Scholar
  30. 30.
    Greenberg DA, Carpenter CL, Messing RO (1985) Inactivation of 45Ca2+ uptake by prior depolarization of PC12 cells. Neuroscience Letters 62:377–381PubMedCrossRefGoogle Scholar
  31. 31.
    Griffiths T, Evans MC, Meldrum BS (1983) Intracellular calcium accumulation of rat hippocampus during seizures induced by bicuculline or L-allylglycine. Neuroscience 10:385–395PubMedCrossRefGoogle Scholar
  32. 32.
    Grima M, Schwartz J, Spach MO, Velly J (1986) Anti-anginal arylalkylamines and sodium channels: 3H-batrachotoxinin-A 20-x-benzoate and 3H-tetracaine binding. Br J Pharmacol 89:641–646PubMedGoogle Scholar
  33. 33.
    Gross RA, MacDonald RL (1988) Barbiturates and nifedipine have different and selective effects on calcium currents of mouse DRG neurons in culture. Neurology 38:443–451PubMedGoogle Scholar
  34. 34.
    Hagiwara S, Byerly L (1981) Calcium channel. Annu Rev Neurosci 4:69–125PubMedCrossRefGoogle Scholar
  35. 35.
    Halliwell JV (1983) Caesium loading reveals two distinct Ca-currents in voltage-clamped guinea pig hippocampal neurons in vitro. J Physiol (Lond) 341:10–11Google Scholar
  36. 36.
    Heinemann U, Louvel J (1983) Changes in Ca2+ and K+ during repetitive electrical stimulation and during pentylenetetrazole induced seizure activity in the sensorimotor cortex of cats. Pflugers Arch 398:310–317PubMedCrossRefGoogle Scholar
  37. 37.
    Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in cerebral cortex of the cat. Exp Brain Res 27:237–243PubMedCrossRefGoogle Scholar
  38. 38.
    Heuser D (1978) The significance of cortical extracellular H+, K+, and Ca2+ activities for regulation of local cerebral blood flow under conditions of enhanced neuronal activity. CIBA Found Sym 56:339–353Google Scholar
  39. 39.
    Higuchi S, Sasaki H, Shiobara Y, Sado T (1977) Absorption, excretion and metabolism of a new dihydropyridine diester cerebral vasodilator in rats and dogs. Xenobiotica 7:469–479PubMedCrossRefGoogle Scholar
  40. 40.
    Hoffmeister F, Benz U, Heise A, Krause HP, Neuser V (1982) Behavioral effects ofnimodipine in animals. Arzneim Forsch 32:347–360Google Scholar
  41. 41.
    Janis RA, Siver J, Triggle DJ (1987) Drug action and cellular calcium regulation. Adv Drug Research 16:309–586Google Scholar
  42. 42.
    Johnston D, Brown TH (1984) Mechanisms of neuronal burst generation. In: Schwartzkroin PA, Wheal HV (eds) Electrophysiology of epilepsy. Academic Press, New York, pp 277–301Google Scholar
  43. 43.
    Johnston D, Hablitz JJ, Wilson WA (1980) Voltage clamp discloses slow inward current in hippocampal burst firing neurons. Nature (Lond) 286:391–393CrossRefGoogle Scholar
  44. 44.
    Katz B, Miledi R (1966) Spontaneous and evoked acitivity of motor nerve endings in calcium Ringer. J Physiol (Lond) 203:689–706Google Scholar
  45. 45.
    Katz B, Miledi R (1970) Further study of the role of calcium in synaptic transmission. J Physiol (Lond) 207:789–801Google Scholar
  46. 46.
    Llinas R, Yarom Y (1981) Electrophysiology of mammalian inferior olivary neurons in vitro. Different types of voltage dependent conductances. J Physiol (Lond) 315:549–567Google Scholar
  47. 47.
    Llinas R, McGuinness TL, Leonard CS, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calciumlcalmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci USA 82:3035–3039PubMedCrossRefGoogle Scholar
  48. 48.
    MacDonaold RL, Skerritt JH, Werz MA (1986) Adenosine agonists reduce voltage-dependent calcium conductances of mouse sensory neurons in cell cultures. J Physiol (Lond) 370:70–90Google Scholar
  49. 49.
    Marchetti C, Carbone E, Lux HD (1986) Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pfluegers Arch 406:104–111CrossRefGoogle Scholar
  50. 50.
    Meldrum BS (1983) Metabolic factors during prolonged seizures and their relation to nerve cell death. Adv Neurobiol 34:261–275Google Scholar
  51. 51.
    Meyer FB, Anderson RE, Yaksh TL, Sundt, TM Jr (1986) Effect of nimodipine on intracellular brain pH, cortical blood flow, and EEG in experimental focal cerebral ischemia. J Neurosurg 64:617–626PubMedCrossRefGoogle Scholar
  52. 52.
    Meyer FB, Anderson RE, Sundt TM Jr, Sharbrough FW (1986) Selective CNS calcium channel blockers-a new class of anticonvulsants. Mayo Clin Proc 61:239–247PubMedGoogle Scholar
  53. 53.
    Meyer FB, Tally PW, Anderson RE, Sundt TM Jr, Yaksh TL (1986) Inhibition of electrically induced seizures by a dihydropyridine calcium channel blocker. Brain Research 384:180–183PubMedCrossRefGoogle Scholar
  54. 54.
    Meyer FB, Anderson RE, Sundt TM Jr, Yaksh TL (1986) Intracellular brain pH, indicator tissue erfusion, electroencephalography and histology in severe and moderate focal cortical ischemia in the rabbit. J Cereb Blood Flow Metab 6:71–78PubMedCrossRefGoogle Scholar
  55. 55.
    Meyer FB, Anderson RE, Sundt TM Jr, Yaksh TL, Sharbrough FW (1987) Suppression of pentylenetetrazole seizures by oral administration of a dihydropyridine calcium antagonist. Epilepsia 28:409–414PubMedCrossRefGoogle Scholar
  56. 56.
    Meyer FB, Anderson RE, Sundt TM Jr (1988) Anticonvulsant effects of dihydropyridine calcium antagonists on electrically induced seizures. (Submitted to Neuroscience)Google Scholar
  57. 57.
    Miller RJ (1987) Multiple calcium channels and neuronal function. Science 46–52Google Scholar
  58. 58.
    Monaghan DT, Holets VR, Toy DW, Cotman CW (1983) Anatomical distribution of four pharmacologically distinct H3-L-glutamate binding sites. Nature 306:176–179PubMedCrossRefGoogle Scholar
  59. 59.
    Morocutti C, Pierelli F, Sanarelli L, Stefano E, Peppe A, Mattioli GL (1986) Antiepileptic effects of a calcium antagonist (nimodipine) on cefazolin induced epileptogenic foci in rabbits. Epilepsia 27:498–503PubMedCrossRefGoogle Scholar
  60. 60.
    Nowycky MC, Fox AP, Tsien RW (1985) Long-opening mode of gating of neuronal calcium channel and its promotion by the dihydropyridine calcium agonist Bay K8644. Proc Natl Acad Sci USA 82:2178–2182PubMedCrossRefGoogle Scholar
  61. 61.
    Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature 316:440–443PubMedCrossRefGoogle Scholar
  62. 62.
    Peroutka SJ, Allen GS (1983) Calcium channel antagonist binding sites labelled by H3- nimodipine in human brain. J Neurosurg 59:933–937PubMedCrossRefGoogle Scholar
  63. 63.
    Overweg J, Binnie CD, Meijer JWA, Meinardi H, Nuijten STM, Schmaltz S, Wauquier A (1984) Double blind placebo controlled trial of flunarizine as add-on therapy in epilepsy. Epilepsia 25:217–222PubMedCrossRefGoogle Scholar
  64. 64.
    Owen DG, Segal M, Barker JL (1984) A Ca2+ dependent cl-conductance is present in cultured mouse spinal neurons. Nature (Lond) 311:567–570CrossRefGoogle Scholar
  65. 65.
    Pincus JH (1973) Diphenylhydantoin and calcium. Arch Neurol 36:239–244CrossRefGoogle Scholar
  66. 66.
    Pincus JH, Hsiao K (1981) Phenytoin inhibits both synaptosomal Ca2+ uptake and efflux. Exp Neurol 74:293–298PubMedCrossRefGoogle Scholar
  67. 67.
    Preuss KC, Gross GH, Brooks HL, Warltier DC (1985) Slow channel calcium channel activators, a new group of pharmacologic agents. Life Sci 37: 1271–1278PubMedCrossRefGoogle Scholar
  68. 68.
    Prince DA (1985) Physiological mechanisms of focal epileptogenesis. Epilepsia 26 Suppl S3-S14PubMedCrossRefGoogle Scholar
  69. 69.
    Pumain R, Kurcewicz L, Louvel J (1983) Fast extracellular calcium transients: involvement in epileptic processes. Science 222: 177–179PubMedCrossRefGoogle Scholar
  70. 70.
    Pumplin DW, Reese TW, Llinas R (1981) Are the presynaptic membrane particles the calcium channels? Proc Natl Acad Sci USA 78: 7210–7213PubMedCrossRefGoogle Scholar
  71. 71.
    Schwartzkroin PA (1980) Ionic and synaptic determinants of burst generation. In: Lockard JS, Ward AA Jr (eds) Epilepsy: a window to brain mechanisms. Raven Press, New York, pp 83–95Google Scholar
  72. 72.
    Schwartzkroin PA, Slawsky M (1977) Probable calcium spikes in hippocampal neurons. Brain Res 135:157–161PubMedCrossRefGoogle Scholar
  73. 73.
    Siekevitz P, Carlin RK, Wu K (1985) Soc Neurosc Abstract 11:646Google Scholar
  74. 74.
    Siesjö BK (1984) Cerebral circulation and metabolism. J Neurosurg 60:883–908PubMedCrossRefGoogle Scholar
  75. 75.
    Siesjö BK (In Press) Historical overview: calcium, ischemia, and death of brain cells. Ann NY Acad SciGoogle Scholar
  76. 76.
    Sundt TM Jr, Anderson RE (1980) Intracellular brain pH and the pathway of a fat soluble pH indicator across the blood-brain barrier. Brain Res 186:355–364PubMedCrossRefGoogle Scholar
  77. 77.
    Thayer SA, Murphy SN, Miller RJ (1986) Widespread distribution of dihydropyridine-sensitive calcium channels in the central nervous system. Mol Pharmacology 30:505–509Google Scholar
  78. 78.
    Wahl M (1985) Local chemical, neural and humoral regulation of crebrovascular resistance vessels. J Cardiovasc Pharmacol 536–546Google Scholar
  79. 79.
    Walden J, Speckmann E-J, Witte OW (1985) Suppression of focal epileptiform discharges by intraventricular infusion of a calcium antagonist. Electro Clin Neurophysiol 61:299–309CrossRefGoogle Scholar
  80. 80.
    Wieloch T (1985) Neurochemical correlates to regional selective neuronal vulnerability. Prog Brain Res 63:69–85PubMedCrossRefGoogle Scholar
  81. 81.
    Witte OW, Speckmann E-J, Walden J (1987) Motor cortical epileptic foci in vivo: actions of a calcium channel blocker on paroxysmal neuronal depolarizations. Electro Clin Neurophysiol 6:43–55CrossRefGoogle Scholar
  82. 82.
    Wong RKS, Prince DA (1978) Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res 159:385–390PubMedCrossRefGoogle Scholar
  83. 83.
    Wong RKS, Prince DA, Basbaum AL (1979) Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci 76:986–990PubMedCrossRefGoogle Scholar
  84. 84.
    Wong RKS, Traub RD, Miles R (1984) Epileptogenic mechanisms as revealed by studies of the hippocampal slice. In: Schwartzkroin PA, Wheal HV (eds) Electrophysiology of Epilepsy. Academic Press, London pp 254–275Google Scholar
  85. 85.
    Zanotto L, Heinemann U (1983) Aspartate and glutamate induced reductions in extracellular free calcium and sodium concentration in area of CAl of in vitro hippocampal slices of rats. Neuroscience Letter 35:79–84CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • F. B. Meyer
    • 1
  • R. E. Anderson
    • 2
  • T. M. SundtJr.
    • 1
  1. 1.Cerebrovascular Research Laboratories, Department of NeurosurgeryMayo ClinicRochesterUSA
  2. 2.Mayo Graduate SchoolRochesterUSA

Personalised recommendations