Fluid-Phase Endocytosis and Lysosomal Enzyme Excretion Two Facets of Intracellular Membrane Traffic

  • G. Klein
  • M. Bof
  • C. Gonzalez
  • M. Satre

Abstract

Endocytosis is the cellular phenomenon by means of which all eukaryotes, at least to some degree, internalize material in vesicles derived from invaginations of their own plasma membrane. In fluid-phase pinocytosis, the internalized fluid components do not bind to the plasma membrane, and entry is non-saturable with respect to concentration of compounds contained in the fluid. This is in contrast to receptor-mediated endocytosis where internalized ligands bind to specific cell surface receptors (for reviews see Besterman and Low, 1983 ; Steinman et al., 1983 ; Wileman et al., 1985).

Keywords

Sugar Permeability Hydrolysis Sucrose Carbohydrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aley S.B., Cohn Z.A. and Scott W.A. (1984). Endocytosis in Entomoeba histolytica. Evidence for a unique non–acidified compartment. J. Exp. Med. 160: 724–737.Google Scholar
  2. Anderson R.G.W. and Orci L. (1988). A view of acidic intracellular compartments. J. Cell Biol. 106: 539–543.PubMedCrossRefGoogle Scholar
  3. Banno Y., Sasaki N. and Nozawa Y. (1987). Secretion heterogeneity of lysosomal enzymes in Tetrahymena pyriformis. Exp. Cell Res. 170: 259–268.Google Scholar
  4. Besterman J.M., Airhart J.A., Woodworth R.C. and Low R.B. (1981). Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J. Cell Biol. 91: 716–727.Google Scholar
  5. Besterman J.M. and Low R.B. (1983). Endocytosis: a review of mechanisms and plasma membrane dynamics. Biochem. J. 210: 1–13.Google Scholar
  6. Cohn Z.A. and Ehrenreich B.A. (1969). The uptake, storage and intracellular hydrolysis of carbohydrates by macrophages. J. Exp. Med. 129: 201–225.Google Scholar
  7. Crean E.V. and Rossomando E.F. (1979). Effects of sugars on glycosidase secretion in Dictyostelium discoideum. J. Gen. Microbiol. 110: 315–322.Google Scholar
  8. Creek K.E. and Sly W.S. (1984). The role of the phosphomannosyl receptor in the transport of acid hydrolases to lysosomes. in “Lysosomes in Biology and Pathology”, (eds. Dingle J.T. and Dean R.T. ) vol. 7, pp. 63–88. Elsevier Science Publishers, Amsterdam, Holland.Google Scholar
  9. De Belder A.N. and Granath K. (1973). Preparation and properties of fluorescein–labelled dextrans. Carbohydrate Res. 30: 375–378.CrossRefGoogle Scholar
  10. Dimond R.L., Burns R.A. and Oordan K.B. (1981). Secretion of lysosomal enzymes in the cellular slime mold, Dictyostelium discoideum. J. Biol. Chem. 256: 6565–6572.Google Scholar
  11. Dimond R.L., Knecht D.A., Jordan K.B, Burns R.A. and Livi G.P. (1983). Secretory mutants in the cellular slime mold Dictyostelium discoideum. Methods Enzymol. 96: 815–828.PubMedCrossRefGoogle Scholar
  12. Duncan R. and Pratten M.K. (1985). Pinocytosis: mechanism and regulation, in “Mononuclear Phagocytes: Physiology and Pathology”, (eds. Dean R.T. and Oessup W.) pp. 27–51. Elsevier Science Publishers, Amsterdam, Holland..Google Scholar
  13. Fell H.B. and Dingle J.T. (1966). Extracellular release of lysosomal enzymes in response to sucrose. Biochem. J. 98: 40 P.Google Scholar
  14. Geisow M.J. (1984). Fluorescein conjugates as indicators of intracellular pH. A critical evaluation. Exp. Cell Res. 150: 29–35.Google Scholar
  15. Hales C.N., Docherty K. and Maguire G.A. (1984). Sugar transport in lysosomes. in “Lysosomes in Biology and Pathology”, (eds. Dingle J.T. and Dean R.T. ). Vol. 7, pp. 165–174. Elsevier Science Publishers, Amsterdam, Holland.Google Scholar
  16. Hermelin B., Cherqui G., Bertrand F., Wicek D., Paul A., Garcia I. and Picard J. (1988). Phorbol esterinduced protein kinase C translocation and lysosomal enzyme release in normal and cystic fibrosis fibroblasts. FEBS Lett. 229: 161–166.PubMedCrossRefGoogle Scholar
  17. Hohman T.C. and Bowers B. (1984). Hydrolase secretion is a consequence of membrane recycling. J. Cell Biol. 98: 246–252.PubMedCrossRefGoogle Scholar
  18. Hohman T.C. and Bowers B. (1985). Vacuolar pH is one factor that regulates hydrolases secretion. Eur. J. Cell Biol. 39: 475–480.Google Scholar
  19. Hunseler P., Scheidgen-Kleyboldt G. and Tiedke A. (1987). Isolation and characterization of a mutant of Tetrahymena thermophila blocked in secretion of lysosomal enzymes. J. Cell Sci. 88: 47–55.PubMedGoogle Scholar
  20. Klein G. and Satre M. (1986). Kinetics of fluid-phase pinocytosis in Dictyostelium discoideum amoebae. Biochem. Biophys. Res. Commun. 138: 1146–1152.PubMedCrossRefGoogle Scholar
  21. Leoni P., Dean R.T. and Oessup W. (1985). Secretion of hydro-lases by mononuclear phagocytes. In “Mononuclear Phagocytes: Physiology and Pathology”, (eds. Dean R.T. and Oessup W. ), pp. 181–202. Elsevier Science Publishers, Amsterdam, Holland.Google Scholar
  22. Maxfield F.R. (1985). Acidification of endocytic vesicles and lysosQmes. in “Endocytosis” (eds. Pastan I. and Willingham M.C.). pp. 235–257. Plenum Press, New-York.Google Scholar
  23. Mellman I., Fuchs R. and Helenius A. (1986). Acidification of the endocytic and exocytic pathways. Ann. Rev. Biochem. 55: 663–700.PubMedCrossRefGoogle Scholar
  24. Muir E.M. and Bowyer D.E. (1984). Inhibition of pinocytosis and induction of release of lysosomal contents by lysosomal overload of arterial smooth muscle cells in vitro. Atherosclerosis 50: 85–92.PubMedCrossRefGoogle Scholar
  25. Ohkuma S. and Poole B. (1978). Fluorescence probe measurements of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA 75: 3327–3331.PubMedCrossRefGoogle Scholar
  26. Ohkuma S. and Poole B. (1981). Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J. Cell Biol. 90: 656–664.PubMedCrossRefGoogle Scholar
  27. Preston R.A., Murphy R.F. and Jones E.W. (1987). Apparent endocytosis of fluorescein isothio-cyanate-conjugated dextran by Saccharomyces cerevisiae reflects uptake of low molecular weight impurities, not dextran. J. Cell Biol. 105: 1981–1987.PubMedCrossRefGoogle Scholar
  28. Reijngoud D.-J. and Tager J.M. (1977). The permeability properties of the lysosomal membrane. Biochim. Biophys. Acta 472: 419–449.PubMedGoogle Scholar
  29. Scharschmidt B.F., Lake J.R., Renner E.L., Licko V. and Van Dyke R.W. (1986). Fluid-phase pinocytosis by cultured rat hepatocytes and perfused rat liver: implications for plasma membrane turnover and vesicular trafficking of fluid-phase markers. Proc. Natl. Acad. Sci. USA 83: 9488–9492.PubMedCrossRefGoogle Scholar
  30. Schnyder J. & Baggiolini M. (1980). Secretion of lysosomal enzymes by macrophages in “Mononuclear phagocytes: functional aspects, part 2”, (ed. Van Furth R.), pp. 1369–1384. Martinus Nijhoff publishers The Hague Holland.Google Scholar
  31. Sheshadri J., Cotter D. A. and Dimond R.L. (1986). The characterization and secretion pattern of the lysosomal trehalases of Dictyostelium discoideum. Exp. Mycol. 10: 131–143.Google Scholar
  32. Steinman R.M., Mellman I.S., Muller W.A. and Cohn Z.A. (1983). Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96: 1–27.PubMedCrossRefGoogle Scholar
  33. Swanson J., Vrinec B., Burke E., Bushnell A. and Silverstein S.C. (1986). Effect of alterations in the size of the vacuolar compartment on pinocytosis in J774.2 macrophages. J. Cell Physiol. 128: 195–201.Google Scholar
  34. Thilo L. (1985). Quantification of endocytosis-derived membrane traffic. Biochim. Biophys. Acta 822 : 243–266.Google Scholar
  35. Von Figura K. and Hasilik A. (1986). Lysosomal enzymes and their receptors. Ann. Rev. Biochem. 55: 167–193.CrossRefGoogle Scholar
  36. Wileman T., Harding C. and Stahl P. (1985). Receptor–mediated endocytosis. Biochem. J. 232: 1–14.PubMedGoogle Scholar
  37. Wiley H.S. and McKinley D.N. (1987). Assay of growth factor stimulation of fluid–phase endocytosis. Methods Enzymol. 146: 402–417.PubMedCrossRefGoogle Scholar
  38. Yamashiro D.O. and Maxfield F.R. (1987). Kinetics of endosome acidification in mutant and wild-type Chinese hamster ovary cells. J. Cell Biol. 105: 2713–2721.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. Klein
  • M. Bof
  • C. Gonzalez
  • M. Satre

There are no affiliations available

Personalised recommendations