Skip to main content

Biosynthesis and Mode of Insertion of a Stalked Intrinsic Membrane Protein of the Small Intestinal Brush Border

  • Chapter
Dynamics of Membrane Proteins and Cellular Energetics
  • 62 Accesses

Abstract

As revealed by electron microscopy (negative staining) the outer, luminal surface of brush border membranes is studied with lollipop-like proteins. These proteins have been identified with a number of enzymes, nearly all of them hydrolases. These proteins protrude into the lumen, and are attached to the membrane bilayer via a hydrophobic “stalk” and an embedded hydrophobic segment (hence the name of “stalked intrinsic membrane proteins” (Brunner et al., 1979) (see more below). As these enzymes of the plasma membrane exert their function on the outside of the membrane they are referred to as ectoenzymes. An extended but certainly not exhaustive list of the hydrolases of brush border membranes is given in Table 1 (for recent reviews see Kenny and Turner, 1987). Much attention has been paid in the last ten years or so to the mode of membrane insertion and biosynthesis of these proteins (for a recent review, see Semenza 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auricchio S., Rubino A., Prader A., Rey J., Jos J., Frézal J. and Davidson M. (1965a). Intestinal glucosidase activities in congenital malabsorption of disaccharidases. J. Ped. 66: 555–564.

    Article  CAS  Google Scholar 

  • Auricchio S., Semenza G., Rubino A. (1965 b). Multiplicity of human intestinal disaccharidases. II. Characterization of the individual maltases. Biochim. Biophys. Acta 96: 498–507.

    CAS  Google Scholar 

  • Brunner J., Hauser H., Braun H., Wilson K.J., Wacker H., O’Neill B., Semenza G. (1979). The mode of association of the enzyme complex sucrase-isomaltase with the intestinal brush-border membrane. J. Biol. Chem. 254: 1821–1828.

    PubMed  CAS  Google Scholar 

  • Buller H.A., Montgomery R.K., Sasak W.V., Grand R.J. (1987). Biosynthesis glycosylation, and intracellular transport of intestinal lactase-phlorizin-hydrolase in rat. J. Biol. Chem. 262: 17206–17211.

    PubMed  CAS  Google Scholar 

  • Cogoli A., Eberle A., Sigrist H., Joss Ch., Robinson E., Mosimann H., Semenza G. (1973). Subunits of the small- intestinal sucrase-isomaltase complex and separation of its enzymatically active isomaltase moiety. Eur. J. Biochem. 33: 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Dahlqvist A. (1962). Specificity of the human intestinal disaccharidases and implications for hereditary disaceha- ride intolerance. J. Clin. Invest. 41: 463–470.

    Article  PubMed  CAS  Google Scholar 

  • Danielsen E.M. (1982). Biosynthesis of intestinal microvillar proteins. Pulse chase labeling studies on aminopeptidase N and sucrase-isomaltase. Biochem. J. 204: 639–645.

    PubMed  CAS  Google Scholar 

  • Danielsen E.M., Cowell G.M. (1985). Biosynthesis of intestinal microvillar proteins. The intracellular transport of amino-peptidase N and sucrase-isomaltase occurs at different rates pre-Golgi but at the same rate past-Golgi. FEBS Lett. 190: 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Danielsen E.M., Cowell G.M., Noren, Sjostrom H. (1984 a). Biosynthesis of microvillar proteins. Biochem. J. 221: 1–14.

    CAS  Google Scholar 

  • Danielsen E.M., Skovbjerg H., Noren O., Sjostrom H. (1984 b). Biosynthesis of intestinal microvillar proteins. Intracel-lular processing of lactase-phlorizin-hydrolase. Biochem. Biophys. Res. Commun. 122: 82–90.

    Article  CAS  Google Scholar 

  • Devault A., Lazure C., Nault Ch., Le Moual H., Seidah N.G., Chretien M., Kahn Ph., Powell J., Mallet J., Beaumont A., Roques B.P., Crine P., Boileau G. (1987). Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA. EMBO J. 6 1317–1322

    PubMed  CAS  Google Scholar 

  • Dubs R., Steinmann B., Gitzelmann R. (1973). Demonstration of an inactive enzyme antigen in sucrase-isomaltase deficiency. Helv. paediat. Acta 28: 187–198.

    PubMed  CAS  Google Scholar 

  • Frank G., Brunner J., Hauser H., Wacker H., Semenza G., Zuber H. (1978). The hydrophobic anchor of smal1-intestinal sucrase-isomaltase. N-terminal sequence of the isomaltase subunit. FEBS Lett. 96: 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Freiburghaus A.U., Dubs R., Hadorn B., Gaze H., Hauri H.P., Gitzelmann R. (1978). The brush border membrane in heredi-tary sucrase-isomaltase deficiency: abnormal protein pat-tern and presence of immunoreactive enzyme. Eur. J. Clin. Invest. 7: 455–459.

    Article  Google Scholar 

  • Furthmayr H., Galardy R.E., Tomita M., Marchesi V.T. (1978). The intramembranous segment of human erythrocyte glycophorin A. Arch. Biochem. Biophys. 185: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Ghersa P., Huber P., Semenza G., Wacker H. (1986). Cell-free synthesis, membrane integration, and glycosylation of pro-sucrase-isomaltase. J. Biol. Chem. 261: 7969–7974.

    PubMed  CAS  Google Scholar 

  • Gray G.M., Conklin K.A., Townley R.R.W. (1976). Sucrase- isomaltase deficiency. Absence of an inactive enzyme variant. New Engl. J. Med. 14: 750–753.

    Article  Google Scholar 

  • Hauri H.-P., Quaroni A., Isselbacher K. (1979). Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase-isomaltase. Proc. Natl. Acad. Sci. USA 76: 5183–5186.

    Article  PubMed  CAS  Google Scholar 

  • Hauri H.-P., Quaroni A., Isselbacher K.J. (1980). Monoclonal antibodies to sucrase-isomaltase: probes for the study of postnatal development and biogenesis of the intestinal microvillus membrane. Proc. Natl. Acad. Sci. USA 77: 6629–6633.

    Article  PubMed  CAS  Google Scholar 

  • Hauri H.-P, Wacker H., Rickli E.E., Bigler-Meier B., Quaroni A., Semenza G. (1982). Biosynthesis of sucrase-isomaltase. Purification and NH2-terminal amino acid sequence of the rat sucrase-isomaltase precursor (pro-sucrase-isomaltase) from fetal intestinal transplants. J. Biol. Chem. 257: 4522–4528.

    PubMed  CAS  Google Scholar 

  • Hauri H.-P., Sterchi E.E., Bienz D., Fransen 3.A.M., Marxer A. (1985). Expression and intracellular transport of microvillus membrane hydrolases in human epithelial cells. J. Cell Biol. 101: 838–851.

    Article  PubMed  CAS  Google Scholar 

  • Henning S.J. (1985). Ontogeny of enzymes in the small intestine. Ann. Rev. Physiol. 47: 231–245.

    Article  CAS  Google Scholar 

  • Hooper N.M., Low M.G., Turner A.J. (1987). Renal dipeptidase is one of the membrane proteins released by phosphatidyli- nositol-specific phospholipase C. Biochem. J. 244: 465–469.

    PubMed  CAS  Google Scholar 

  • Hu C., Spiess M., Semenza G. (1987). The mode of anchoring and precursur forms of sucrase-isomaltase and maltase- glucoamylase in chicken intestinal brush border membrane. Phylogenetic implications. Biochim. Biophys. Acta 896: 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Hunziker W., Spiess M., Semenza G., Lodish H.F. (1986). The sucrase-isomaltase complex: Primary structure, membrane orientation and evolution of a stalked, intrinsic brush border protein. Cell 46: 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Kedinger M., Haffen K., Simon-Asmann P. (1986). Control mechanism in the ontogenesis of villus cells. In Molecular and Cellular Basis of Digestion ( Desnuelle P., Sjöström H., Noren O., eds.) Elsevier, Amsterdam, pp. 323–334.

    Google Scholar 

  • Kenny A.J., Turner A.J. (1987). Mammalian Ectoenzymes. Elsevier Science Publishers B.V. ( Biomedical Division).

    Google Scholar 

  • Kerry K.R., Townley R.R. (1965). Genetic aspects of intestinal sucrase-isomaltase deficiency. Austr. Paediatr. J. 1: 223–235.

    Google Scholar 

  • Koldovsky O. (1981). Developmental, dietary and hormonal control of intestinal disaccharidases in mammals (including man). In: Carbohydrate Metabolism and Its Disorders ( Randle J.P., Steiner D.F., Whelan W.J., eds) vol. 3 pp. 418–522. Academic Press, London.

    Google Scholar 

  • Kolinska J., Semenza G. (1967). Studies on intestinal sucrase and on intestinal sugar transport. V. Isolation and proper-ties of sucrase-isomaltase from rabbit small intestine. Biochim. Biophys. Acta 146: 181–195.

    PubMed  CAS  Google Scholar 

  • Laperche Y., Bulle F., Aissani T., Chobert M.N., Aggerbeck M., Hanoune 3., Guellaen G. (1986). Molecular cloning and nucleotide sequence of rat kidney y-glutamyltranspeptidase cDNA. Proc. Natl. Acad. Sci. USA 83: 937–941.

    Article  PubMed  CAS  Google Scholar 

  • Louvard D., Sémériva M., Maroux S. (1976). The brush-border intestinal aminopeptidase, a transmembrane protein as probed by macromolecular photolabeling. J. Mol. Biol. 106: 1023–1035.

    Article  PubMed  CAS  Google Scholar 

  • Low M.G. (1987). Biochemistry of the glycosyl-phosphatidylino- sitol membrane protein anchors. Biochem. J. 244: 1–13.

    PubMed  CAS  Google Scholar 

  • Macnair R.D., Kenny A.J. (1979). Proteins of the kidney micro- villar membrane. The amphipathic form of dipeptidyl pepti-dase IV. Biochem. J. 179: 379–395.

    PubMed  CAS  Google Scholar 

  • Malfroy B., Schofield P.R., Kuang W.-J., Seeburg P.H., Mason A.J., Henzel W.J. (1987). Molecular cloning and amino acid sequence of rat enkephalihase. Biochem. Biophys. Res. Commun. 144: 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Mobassaleh M., Montgomery R.K., Biller J.A., Grand R.J. (1985). Development of carbohydrate absorption in the fetus and neonate. Pediatrics 75 (suppl.): 160–165.

    Google Scholar 

  • Montgomery R.K., Sybicki A.A., Forcier A.G., Grand R.J. (1981). Rat intestinal microvillus membrane sucrase-isomal- tase is a single high molecular weight protein and fully active enzyme in the absence of luminal factors. Biochim. Biophys. Acta 661: 346–349.

    PubMed  CAS  Google Scholar 

  • Naim H.V., Sterchi E.E., Lentze M.J. (1987). Biosynthesis and maturation of 1 acta se-phl orizin hydrolase in the human small intestinal epithelial cells. Biochem. J. 241:

    Google Scholar 

  • Naim H.V., Roth J., Sterchi E., Lentze M., Milla P., Schmitz J., Hauri H.-P. (1988). Sucrase-isomaltase deficiency in man. Different mutations disrupt intracellular transport, processing and function of an intestinal brush border enzyme. J. Clin. Invest, in press.

    Google Scholar 

  • Norén O., Sjöström H., Cowell G., Tranum-Jensen J., Hansen O.C., Welinder K.G. (1986). Pig intestinal microvillar maltase glucoamylase. Structure and membrane insertion. J. Biol. Chem. 261: 12306–12309.

    PubMed  Google Scholar 

  • Prader A., Auricchio S., Mürset G. (1961). Durchfall infolge hereditären Mangels an intestinaler Saccharaseaktivität (Saccharose-intoleranz). Schweiz. Med. Wochschr. 91 465–468.

    CAS  Google Scholar 

  • Riby J.E., Kretchmer N. (1985). Participation of pancreatic enzymes in the degradation of intestinal sucrase-isomal- tase. J. Paediatr. Gastroenterol. Nutr. 4: 971–979.

    Article  CAS  Google Scholar 

  • Schmitz J., Bresson J-L., Triadou N., Bataille J., Rey J. (1980). Analyse en électrophorèse sur gel de Polyacrylamide des protéines de la membrane microvillositaire et d’une fraction cytoplasmique dans 8 cas d’intolérance congénitale au saccharose. Gastroenterol. Clin. Biol. 4: 251–256.

    PubMed  CAS  Google Scholar 

  • Semenza G. (1968). Intestinal oligosaccharidases and disaccha- ridases. In: Handbook of Physiology, Sect. 6, Vol. V ( Semenza G, ed.) pp. 2543–2566. Washington D.C.

    Google Scholar 

  • Semenza G. (1978). The sucrase-isomaltase complex, a large dimeric amphipathic protein from the small intestinal brush border membrane: Emerging structure-function relationships. In: Structure and Dynamics of Chemistry. (P. Ahlberg, L.-0., Sundelöf, eds.) Symp. 500th Jubilee, University of Uppsala, Sweden, 1977, pp. 226–240 ).

    Google Scholar 

  • Semenza G. ( 1979 a). The mode of anchoring of sucrase-isomal- tase to the small-intestinal brush border membrane and its biosynthetic implications. In: Proc. 12th FEBS Meeting, Dresden 1978, (S. Rapoport, T. Schewe, eds.) 53: 21–28 Oxford/New York, Pergamon.

    Google Scholar 

  • Semenza G. ( 1979 b). Mode of insertion of the sucrase-isomal- tase complex in the intestinal brush border membrane: Implications for the biosynthesis of this stalked intrinsic membrane protein. In: Development of Mammalian Absorptive Processes. Ciba Foundation Symposium (K. Elliott, W.J. Whelan, eds.) 70: 133–144, Amsterdam, Excerpta Medica. Semenza G. (1981). Intestinal oligo- and disaccharidases. In: Carbohydrate Metabolism and Its Disorders. (P.3. Randle, D.F. Steiner, W.3. Whelan, eds.) 425–479, London, Academic Press.

    Google Scholar 

  • Semenza G. (1986). Anchoring and biosynthesis of stalked brush border membrane proteins: Glycosidases and peptidases of enterocytes and renal tubuli. Ann. Rev. Cell Biol. 2: 255–313.

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom H., Noren O., Christiansen L., Wacker H., Semenza G. (1980). A fully active, two-active site, sing1e-chain- sucrase-isomaltase from pig small intestine. J. Biol. Chem. 255: 11332–11338.

    PubMed  CAS  Google Scholar 

  • Sjostrom H., Noren O., Christiansen L.A., Wacker H., Spiess M., Bigler-Meier B., Rickli E.E., Semenza G. (1982). N-terminal sequences of pig intestinal sucrase-isomaltase and pro-sucrase-isomaltase. Implications for the biosynthesis and membrane insertion of pro-sucrase-isomaltase. FEBS Lett. 148: 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Skovbjerg H. (1982). High-molecular weight pro-sucrase-isomal- tase in human fetal intestine. Pediatr. Res. 16: 948–949.

    Article  PubMed  CAS  Google Scholar 

  • Skovbjerg H., Danielsen E.M., Noren O., Sjostrom H. (1984). Evidence for biosynthesis of lactase-phlorizin-hydrolase as a single-chain high-molecular weight precursor. Biochim. Biophys. Acta 798 : 247–251.

    Article  PubMed  CAS  Google Scholar 

  • Spiess M., Lodish H.F. (1986). An internal signal sequence : The asialoglycoprotein receptor membrane anchor- Cell 44 : 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Takesue Y., Vokota K., Nishi Y., Taguchi R., Ikesawa H. (1986). Solubilization of trehalase from rabbit renal and intestinal brush-border membranes by a phosphoinosito1- specific phospholipase C. FEBS Lett. 201: 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Wacker H., Oaussi R., Sonderegger P., Dokow M., Ghersa P., Hauri H.-P., Christen Ph., Semenza G. (1981). Cell-free synthesis of the one-chain precursor of a major intrinsic protein complex of the small intestinal brush membrane (pro-sucrase-isomaltase). FEBS Lett. 136: 329–332.

    Article  PubMed  CAS  Google Scholar 

  • Wacker H., Aggeler R., Kretchmer N., O’Neill B., Takesue Y., Semenza G. (1984). A two-active site one-polypeptide enzyme: the isomaltase from sea lion small intestinal brush border membrane. J. Biol. Chem. 259: 4878–4884.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Semenza, G. (1988). Biosynthesis and Mode of Insertion of a Stalked Intrinsic Membrane Protein of the Small Intestinal Brush Border. In: Latruffe, N., Gaudemer, Y., Vignais, P., Azzi, A. (eds) Dynamics of Membrane Proteins and Cellular Energetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73905-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73905-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50047-6

  • Online ISBN: 978-3-642-73905-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics