The Structure and Function of Ca+2 - and Phospholipid- Dependent Protein Kinase (Protein Kinase C), A Trans-Membrane Signal Transducer

  • C. W. Mahoney
  • A. Azzi

Abstract

Ca+2- and phospholipid- dependent protein kinase (protein kinase c), first discovered by Nishizuka’s group as a protease-activated kinase in 1977 (Takai et al., 1977 ; Inoue et al., 1977), has generated tremendous interest in the biochemical community in the last 11 years because of its implication in numerous biological processes including tumor promotion (Hecker & Schmidt, 1979), membrane transporter and channel modulation (Sigel et al., 1988 ; Costa & Catterall, 1985 ; Liles et al., 1986 ; Witters et al., 1985), differentiation (Morin et al., 1987 ; Pahlman et al., 1983), muscle contraction (Ikeba et al., 1985 ; Nishikawa et al., 1984 & 1985), neural synaptic communication (Tanaka et al., 1986), secretion (Ieyasu et al., 1982 ; Kajikawa et al., 1983), the respiratory burst (Mahoney & Azzi, in press, 1988 ; Lüthy & Azzi, 1987 ; Mahoney et al., 1986 ; Serhan et al., 1983 ; Fujita et al., 1984), the immune response (Patel et al., 1987), growth (Cooper et al., 1982 ; Cochet et al., 1984 ; McCaffrey et al., 1984 ; Davis & Czech, 1985) and platelet aggregation (Froscio et al., 1988 ; Mahoney & Azzi, in press ; Naka et al., 1983 ; Sano et al., 1983 ; Watson et al., 1988 ; Mahoney et al., this volume) (for reviews see Nishizuka 1984 & 1986).

Keywords

Serotonin Serine Acetylcholine Thrombin Neuroblastoma 

Abbreviations used

PKC

protein kinase c

PS

phosphatidylserine

PDB

phorbol 12, 13 dibutyrate

DAG

diacylglycerol

Mr

apparent molecular weight

kDa

kilo-dalton

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert K.A., Wu W., Nairn A.C. & Greengard P. (1984) Inhibition of calmodulin of calcium/phospholipid dependent protein kinase phosphorylation. Proc. Natl. Acad. Sci. (USA) 81: 3622–3625.CrossRefGoogle Scholar
  2. Ashendel C.L., Staller J.M. & Boutwell R.K. (1983). Identifi-cation of a calcium- and phospholipid-dependent phorbol ester binding activity in the soluble fraction of mouse tissues. Biochem. Biophys. Res. Commun. 111: 340–345.PubMedCrossRefGoogle Scholar
  3. Beavo J.A. & Mumby M.C. (1982). Cyclic AMP-dependent protein phosphorylation, in Cyclic Nucleotides, Part 1, Biochemistry. Nathanson 3.A. & Kebabian 3.W. (eds). Springer Verlag, Berlin, pp. 363–392.Google Scholar
  4. Berkow R.L. & Kraft A.S. (1985). Bryostatin, a non-phorbol macrocyclic lactone, activates intact human polymorphonu-clear leukocytes and binds to the phorbol ester receptor. Biochem. Biophys. Res. Commun. 131: 1109–1116.PubMedCrossRefGoogle Scholar
  5. Berridge M.J. (1984). Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360.PubMedGoogle Scholar
  6. Brandt S.J., Niedel J.E., Bell R.M. & Young W.S. (1987). Distinct patterns of expression of different protein kinase c mRNAs in rat tissues. Cell 49: 57–63.Google Scholar
  7. Castagna M., Takai V., Kaibuchi K., Sano K., Kikkawa U. & Nishizuka Y. (1982). Direct activation of calcium-activa- ted, phospholipid-dependent protein kinase by tumor-promo- ting phorbol esters. J. Biol. Chem. 257: 7847–7851.PubMedGoogle Scholar
  8. Cochet C., Gill G.N., Meisenhelder J., Cooper J.A. & Hunter T. (1984). C-kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activity. J. Biol. Chem. 259: 2553–2558.PubMedGoogle Scholar
  9. Costa M.R. & Catterall W.A. (1985). Phosphorylation of the alpha subunit of the sodium channel by protein kinase c. Cell. Mol. Neurobiol. 4: 291–297.CrossRefGoogle Scholar
  10. Cooper R.A., Brunwald A. D. & Kuo A. L. (1982). Phorbol ester induction of leukemic cell differentiation is a membrane- mediated process. Proc. Natl. Acad. Sci. (USA) 79: 2865–2869.CrossRefGoogle Scholar
  11. Coussens L., Parker P.O., Rhee L., Yang-Feng T.L., Chen E., Waterfield M.D., Francke U. & Ullrich A. (1986). Multiple, distinct forms of bovine and human protein kinase c suggest diversity in cellular signaling pathways. Science 233: 859–866.PubMedCrossRefGoogle Scholar
  12. Davis R.J., & Czech M.P. (1985). Platelet-derived growth factor mimics phorbol diester action on epidermal growth factor receptor phosphorylation at thr 654. Proc. Natl. Acad. Sci. (USA) 82: 4080–4084.CrossRefGoogle Scholar
  13. Delclos K.B., Yeh E. & Blumberg P.M. (1983). Specific labeling of mouse brain membrane phospholipids with [20- 3H] phorbol 12-p-azidobenzoate 13-benzoate, a photolabile phorbol ester. Proc. Natl. Acad. Sci. (USA) 80: 3054–3058.CrossRefGoogle Scholar
  14. Froscio M., Solanki U., Murray A.N. & Hurst N.P. (1988). Auranofin enhances phosphorylation of purative substrates of protein kinase c in human platelets. Biochem. Pharmacol. 37: 366–368.PubMedCrossRefGoogle Scholar
  15. Fujita I., Irita K., Takeshiga K., & Minakami S. (1984). Diacylglycerol, 1-oleoyl-2-acetylglycerol, stimulates superoxide generation from human neutrophils. Biochem. Biophys. Res. Commun. 120: 318–324.PubMedCrossRefGoogle Scholar
  16. Gopalakrishna R., Barsky S.H., Thomas T.P. & Anderson W.B. (1986). Factors influencing chelator-stable, detergent- extractable, phorbol diester-induced membrane association of protein kinase c. J. Biol. Chem. 261: 16438–16445.PubMedGoogle Scholar
  17. Hansson A., Serhan C.N., Haeggstrom J., Ingelman-Sundberg M. & Samuelsson B. (1986). Activation of protein kinase c by lipoxin A and other eicosanoids. Intracellular action of oxygenation products of arachidonic acid. Biochem. Biophys. Res. Commun. 134: 1215–1222.PubMedCrossRefGoogle Scholar
  18. Hecker E. & Schmidt R. (1979). Phorbolesters - the irritants and cocarcinogens of Croton tiqlium L. Forstchr. Chem. Org. Naturstoff 31: 377–467.CrossRefGoogle Scholar
  19. House C. & Kemp B.E. (1987). Protein kinase c contains a pseudosubstrate prototype in its regulatory domain. Science 238: 1726–1728.PubMedCrossRefGoogle Scholar
  20. Huang F.L., Voshida Y., Nakabayashi H. & Huang K. (1987). Differential distribution of protein kinase c isozymes in the various regions of brain. J. Biol. Chem. 262: 15714–15720.PubMedGoogle Scholar
  21. Huang K., Chan K.J., Singh T.O., Nakabayashi H. & Huang F.L. (1986 a). Autophosphorylation of rat brain Ca+2 -activated and phospholipid -dependent protein kinase. J. Biol. Chem. 261: 12134–12140.Google Scholar
  22. Huang K. & Huang F.L. (1986). Conversion of protein kinase c from a Ca+2 -dependent to an independent form of phorbol ester -binding protein by digestion with trypsin. Biochem. Biophys. Res. Commun. 139: 320–326.PubMedCrossRefGoogle Scholar
  23. Huang K., Nakabashi H. & Huang F.L. (1986 b). Isozymic forms of rat brain Ca+ -activated and phospholipid -dependent protein kinase. Proc. Natl. Acad. Sci. (USA) 83: 8535–8539.CrossRefGoogle Scholar
  24. Hucho F., Kruger H., Pribilla I. & Oberdieck U. (1987). A 40 kDa inhibitor of protein kinase c purified from bovine brain. FEBS Lett 211: 207–210.PubMedCrossRefGoogle Scholar
  25. Ido M., Sekiguchi K., Kikkawa U. & Nishizuka V. (1987). Phosphorylation of the epidermal growth factor receptor from A431 epidermoid carcinoma cells by three distinct types of protein kinase c. FEBS Lett 219: 215–218.PubMedCrossRefGoogle Scholar
  26. Iekeba M., Inagaki M., Kanamaru K. & Hidaka H. (1985). Phosphorylation of smooth muscle myosin light chain kinase by Ca+2 -activated, phospholipid -dependent protein kinase. J. Biol. Chem. 260: 4547–4550.Google Scholar
  27. Ieyasu H., Takai Y., Kaibuchi K., Sawamura M. & Nishizuka Y. (1982). A role of calcium - activated, phospholipid -dependent protein kinase in platelet-activating factor-induced serotonin release from rabbit platelets. Biochem. Biophys. Res. Commun. 108: 1701–1708.PubMedCrossRefGoogle Scholar
  28. Inoue M., Kishimoto A., Takai Y. & Nishizuka Y. (1977). Studies on a cyclic nucleotide - independent protein kinase and its proenzyme in mammalian tissues. J. Biol. Chem. 252: 7610–7616.PubMedGoogle Scholar
  29. Jeffrey A.M. & Liskamp R.M.J. (1986). Computer -assisted molecular modeling of tumor promoters: rationale for the activity of phorbol esters, teleocidin B, and aplysiatoxin. Proc. Natl. Acad. Sci. (USA) 83: 241–245.CrossRefGoogle Scholar
  30. Kajikawa S., Kaibuchi K., Matsubara T., Kikkawa U., Takai Y. & Nishizuka Y. (1983). A possible role of protein kinase c in signal-induced lysosomal enzyme release. Biochem. Biophys. Res. Commun. 116: 743–760.PubMedCrossRefGoogle Scholar
  31. Kraft A.S. & Anderson W.B. (1983). Phorbol esters increase the amount of Ca+2, phospholipid-dependent protein kinase associated with plasma membrane. Nature 301: 621–623.PubMedCrossRefGoogle Scholar
  32. Kraft A.S., Anderson W.B., Cooper H.L. & Sando J.J. (1982). Decrease in cytosolic calcium/phospholipid -dependent protein kinase activity following phorbol ester treatment of EL4 thyoma cells. J. Biol. Chem. 257: 13193–13196.PubMedGoogle Scholar
  33. Kuo J.F., Schatzman R.C., Turner R.S. & Mazzei G.J. (1984). Phospholipid -sensitive Ca+2 -dependent protein kinase: a major protein phosphorylation system. Mol. & Cell. Endocrinol. 35: 65–73.CrossRefGoogle Scholar
  34. Kuo J.F. & Shoji M. (1982). Cyclic GMP -dependent protein phosphorylation, in Cyclic Nucleotides, Part 1, Biochemistry. Nathanson J.A. & Kababian J.W. (eds). Springer Verlag, Berlin, pp. 393–424.Google Scholar
  35. Lee M. & Bell R.M. (1986). The lipid binding, regulatory domain of protein kinase c. J. Biol. Chem. 261: 14867–14870.PubMedGoogle Scholar
  36. Lepeuch C.J., Ballester R. & Rosen O.M. (1983). Purified rat brain calcium- and phospholipid-dependent protein kinase phosphorylates ribosomal protein S6. Proc. Natl. Acad. Sci. (USA) 80 :6858–6862.CrossRefGoogle Scholar
  37. Liles W.C., Hunter D.D., Meier K.E. & Nathanson N.M. (1986). Activation of protein kinase c induces rapid internalization and subsequent degradation of muscarinic acetylcholine receptors in neuroblastoma cells. J. Biol. Chem. 261: 5307–5313.PubMedGoogle Scholar
  38. Lüthy R. & Azzi A. (1987). Fluorescent and photoactive probes for the study of protein kinase c. Eur. J. Biochem. 162: 387–391.PubMedCrossRefGoogle Scholar
  39. Mahoney C.W. & Azzi A. (1988). The Au(I) anti-rheumatic compounds inhibit protein kinase c. Experientia 44, A82.CrossRefGoogle Scholar
  40. Mahoney C.W. & Azzi A. (in press). Ca+2 - and phospholipid dependent protein kinase (protein kinase c): a pleiotropic signal protein and its inhibition by staurosporine and auranofin, in Perspectives in Molecular Approaches to Human Diseases. Papa S. (ed.). Ellin Horwood, London.Google Scholar
  41. Mahoney C.W., Fredenhagen A., Peter H. & Azzi A. (in press). Staurosporine secondary amine derivatives: synthesis, fluorescent properties, and inhibitory action protein kinase c. Biological Chem. Hoppe-Seyler.Google Scholar
  42. Mahoney C.W., Lüthy R. & Azzi A. (1986). Membrane signal transduction via protein kinase c, in Membrane Proteins. Azzi A. et al. (eds.) Springer Verlag, Berlin, pp. 56–66.CrossRefGoogle Scholar
  43. Malkinson A.M., Girard P.R. & Kuo J.F. (1987). Strain -specific postnatal changes in the activity and tissue levels of protein kinase c. Biochem. Biophys. Res. Commun. 145: 733–739.PubMedCrossRefGoogle Scholar
  44. McCaffrey P.G., Friedman B.A. & Rosner M.R. (1984). Diacylgly- cerol modulates binding and phosphorylation of the epidermal growth factor receptor. J. Biol. Chem. 259: 12502–12507.PubMedGoogle Scholar
  45. McCaffrey P.G., Rosner M.R., Kikkawa U., Sekiguchi K., Ogita K., Ase K. & Nishizuka Y. (1987). Characterization of protein kinase c from normal and transformed cultured murine fibroblasts. Biochem. Biophys. Res. Commun. 146: 140–146.PubMedCrossRefGoogle Scholar
  46. Mc Donald J.R, & Walsh M.P. (1985). Ca+2-binding proteins from bovine brain including a potent inhibitor of protein kinase c. Biochem J. 232: 559–567.Google Scholar
  47. Melloni E., Pontremolli S., Michetti M., Sacco O., Sparatore B., Salamino F. & Horrecker B.L. (1985). Binding of protein kinase c to neutrophil membranes in the presence of Ca+2 and its activation by a Ca+2 -requiring proteinase. Proc. Natl. Acad. Sci. (USA) 82: 6435–6439.CrossRefGoogle Scholar
  48. Michell R. (1983). Ca+2 and protein kinase c: two synergistic cellular signals. Trends Biochem. Sci. 8: 263–265.CrossRefGoogle Scholar
  49. Mochly-Rosen D. & Koshland D.E. (1987). Domain structure and phosphorylation of protein kinase c. J. Biol. Chem. 262: 2291–2297.PubMedGoogle Scholar
  50. Mori T., Takai Y., Vu B., Takahashi J., Nishizuka V. & Fujikura T. (1982). Specificity of the fatty acyl moieties of diacylglycerol for the activation of calcium -activated phospholipid-dependent protein kinase. J. Biochem. 91: 427–431.PubMedGoogle Scholar
  51. Morin M.J., Kreutter D., Rasmussen H. & Sartorelli A.C. (1987). Disparate effects of activators of protein kinase c on HL-60 promyelocytic leukemia cell differentiation. J. Biol. Chem. 262: 11758–11763.PubMedGoogle Scholar
  52. Murakami K. & Routtenberg A. (1985). Direct activation of purified protein kinase c by unsaturated fatty acids (oleate and arachidonate) in the absence of phospholipids and Ca+2. FEBS Lett. 192: 189–193.PubMedCrossRefGoogle Scholar
  53. Naka M., Nishikawa M., Adelstein R.S. & Hidaka H. (1983). Phorbol ester -induced activation of human platelets is associated with protein kinase c phosphorylation of myosin light chains. Nature 306: 490–492.PubMedCrossRefGoogle Scholar
  54. Nakadate T., Deng A.V. & Blumberg P.M. (1987). Effect of phospholipid on substrate phosphorylation by a catalytic fragment of protein kinase c. J. Biol. Chem. 262: 11507– 11513.PubMedGoogle Scholar
  55. Newton A.C. & Koshland D.E. (1987). Protein kinase c autophosphorylates by an intrapeptide reaction. J. Biol. Chem. 262: 10185–10188.PubMedGoogle Scholar
  56. Nishikawa M., Shirakawa S. & Adelstein R.S. (1985). Phosphorylation of smooth muscle myosin light chain kinase by protein kinase c: comparative study of the phosphoryla- ted sites. J. Biol. Chem. 260: 8978–8983.PubMedGoogle Scholar
  57. Nishikawa M., Seller J.R., Adelstein R.S. & Hidaka H. (1984). Protein kinase c modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase J. Biol. Chem. 259: 8808–8814.PubMedGoogle Scholar
  58. Nishizuka V. (1984). The role of protein kinase c in cell surface signal transduction and tumor promotion. Nature 308: 693–698.PubMedCrossRefGoogle Scholar
  59. Nishizuka V. (1986). Studies and perspectives of protein kinase c. Science 233: 305–311.PubMedCrossRefGoogle Scholar
  60. Pahlman S., Ruusala A., Abrahamsson L., Odelstad L. & Nillson K. (1983). Kinetics and concentration effects of TPA -induced differentiation of cultured neuroblastoma cells. Cell Differentiation 12: 165–170.PubMedCrossRefGoogle Scholar
  61. Parker P.J., Coussens L., Totty N., Rhee L., Young S., Chen E., Stabel S., Waterfield M.D. & Ullrich A. (1986). The complete primary structure of protein kinase c - the major phorbol ester receptor. Science 233: 853–858.PubMedCrossRefGoogle Scholar
  62. Patel M.D., Samelson L.E. & Klausner R.D. (1987). Multiple kinases and signal transduction: phosphorylation of the T cell antigen receptor complex. J. Biol. Chem. 262: 5831–5838.PubMedGoogle Scholar
  63. Rhogani M., DaSilva C. & Castagna M. (1987). Tumor promoter chloroform is a potent protein kinase c activator. Biochem. Biophys. Res. Commun. 142: 738–744.CrossRefGoogle Scholar
  64. Safran A., Neumann D. & Fuchs S. (1986). Analysis of acetylcholine receptor phosphorylation sites using anti-bodies to synthetic peptides and monoclonal antibodies. EMBO J. 5: 3175–3178.PubMedGoogle Scholar
  65. Sano K., Takai Y., Yamanashi J. & Nishizuka Y. (1983). A role of calcium -activated phospholipid-dependent protein kinase in human platelet activation. J. Biol. Chem. 258: 2010–2013.PubMedGoogle Scholar
  66. Schulman H. (1982). Calcium -dependent protein phosphorylation, in Cyclic Nucleotides, Part 1, Biochemistry. Nathan- son J.A. & Kebabian, J.W. (eds.) Springer Verlag, Berlin, pp. 425–478.Google Scholar
  67. Sekiguchi K., Tsukuda M., Ogita K., Kikkawa U. & Nishizuka Y. (1987). Three distinct forms of rat brain protein kinase c: differential response to unsaturated fatty acids. Biochem. Biophys. Res. Commun. 145: 797–802.PubMedCrossRefGoogle Scholar
  68. Serhan C.N., Broekman M.D., Korchak H.M., Smolen J.E., Marcus A.J. et al. (1983). Changes in phosphatidylinositol and phosphatidic acid in stimulated human neutrophils. Biochim. Biophys. Acta 762: 420–428.PubMedCrossRefGoogle Scholar
  69. Sharkey N. A. & Blumberg P.M. (1985). Kinetic evidence that 1,2-diolein inhibits phorbol ester binding to protein kinase c via a competitive mechanism. Biochem. Biophys. Res. Commun. 133: 1051–1056.CrossRefGoogle Scholar
  70. Sharkey N.A., Leach K.L. & Blumberg P.M. (1984). Competitive inhibition by diacylglycerol of specific phorbol ester binding. Proc. Natl. Acad. Sci. (USA) 81: 607–610.CrossRefGoogle Scholar
  71. Shearman M.S., Naor Z., Kikkawa U. & Nishizuka Y. (1987). Differential expression of multiple protein kinase c subspecies in rat central nervous tissue. Biochem. Biophys. Res. Commun. 147: 911–919.PubMedCrossRefGoogle Scholar
  72. Sigel E., Baur R. & Reuter H. (1988). Differential regulation by protein kinase c of foreign neuronal ion channels expressed in Xenopus oocytes. Experientia 44, A2.Google Scholar
  73. Takai, Y., Kishimoto A., Inoue M. & Nishizuka Y. (1977). Studies on a cyclic nucleotide - independent protein kinase and its proenzyme in mammalian tissue. J. Biol. Chem. 252: 7603–7609.PubMedGoogle Scholar
  74. Takai Y., Kishimoto A., Kikkawa U., Mori T. & Nishizuka Y. (1979). Unsaturated diacylglycerol as a possible messenger for the activation of calcium–activated, phospholipid- dependent protein kinase system. Biochem. Biophys. Res. Commun. 91: 1218–1224.PubMedCrossRefGoogle Scholar
  75. Tamaoki T., Nomoto H.,Takahashi I., Kato Y., Morimoto M. & Tomita F. (1986). Staurosporine, a potent inhibitor of phospholipid/Ca+2 dependent protein kinase. Biochem. Biophys. Res. Commun. 135: 397–402.PubMedCrossRefGoogle Scholar
  76. Tanaka C., Fujiwara H. & Fuji Y. (1986). Acetylcholine release from guinea pig caudate slices evoked by phorbol ester and calcium. FEBS Lett. 195: 129–134.PubMedCrossRefGoogle Scholar
  77. Tanaka C., Taniyama K. & Kusonocki M. (1984). A phorbol ester and A23187 act synergistically to release acetylcholine from the guinea pig ileum. FEBS Lett. 175: 165–169.PubMedCrossRefGoogle Scholar
  78. Watson S.P., McNally J., Shipman L.J. & Godfrey P.P. (1988). The action of the protein kinase c inhibitor, staurospo- rine, on human platelets; evidence against a regulatory role for protein kinase c in the formation of inositol trisphosphate by thrombin. Biochem. J. 249: 345–350.PubMedGoogle Scholar
  79. Witters L.A., Vater C.A. & Lienhard G.E. (1985). Phosphoryla-tion of the glucose transporter iji vitro and in vivo by protein kinase c. Nature 315: 777–778.PubMedCrossRefGoogle Scholar
  80. Wolf M., Cuatrecasas P. & Sayhoun N. (1985a). Interaction of protein kinase c with membranes is regulated by Ca+2, phorbol esters, and ATP. J. Biol. Chem. 260: 15718–15722.Google Scholar
  81. Wolf M., Levine H., May W.S., Cuatrecasas P. & Sayhoun N. (1985 b). A model for intracellular translocation of protein kinase c involving synergism between Ca+2 and phorbol esters. Nature 317: 546–549.CrossRefGoogle Scholar
  82. Woodgett J.R. & Hunter T. (1987). Immunological evidence for two physiological forms of protein kinase c. Mol. Cell. Biol. 7: 85–96.PubMedGoogle Scholar
  83. Young S., Parker P.J., Ullrich A. & Stabel S. (1987). Down regulation of protein kinase c is due to an increased rate of degradation. Biochem. J. 244: 775–779.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • C. W. Mahoney
  • A. Azzi

There are no affiliations available

Personalised recommendations