Skip to main content

Equilibrium Crystal Shapes and Interfacial Phase Transitions

  • Chapter
Chemistry and Physics of Solid Surfaces VII

Part of the book series: Springer Series in ((SSSUR,volume 10))

Abstract

This chapter reviews the present status of the theory of equilibrium crystal shapes, with particular emphasis on the connection between the crystal-shape problem and recent results in two-dimensional statistical mechanics. Interpretation of the Wulff construction as a Legendre transformation allows the crystal shape to be viewed as a free energy. Thus, edges on the crystal shape correspond to thermodynamic phase boundaries, and critical behavior is observed in the neighborhood of certain edges. The thermal evolution of the crystal shape is reinter-preted from this point of view, and results are compared with recent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Heyraud, J.J. Métois: J. Cryst. Growth 50, 571 (1980)

    Article  CAS  Google Scholar 

  2. J.C. Heyraud, J.J. Métois: Acta Metal. 28, 1789 (1980).

    Article  CAS  Google Scholar 

  3. J.C. Heyraud, J.J. Métois: Surf. Sci. 128, 334 (1983).

    Article  CAS  Google Scholar 

  4. C. Rottman, M. Wortis, J.C. Heyraud, J.J. Métois: Phys. Rev. Lett. 52, 1009 (1984).

    Article  CAS  Google Scholar 

  5. T. Yanagihara: Jap. J. Appl. Phys. 21, 1554 (1982).

    Article  CAS  Google Scholar 

  6. J.C. Heyraud, J.J. Métois: Surf. Sci. 177, 213 (1986)

    Article  CAS  Google Scholar 

  7. J.C. Heyraud, J.J. Métois: J. Cryst. Growth 82, 269 (1987).

    Article  CAS  Google Scholar 

  8. J.J. Métois, J.C. Heyraud: Surf. Sci. 180, 647 (1987).

    Article  Google Scholar 

  9. J. Landau, S.G. Lipson, L.M. Maattanen, L.S. Balfour, D.O. Edwards: Phys. Rev. Lett. 45, 31 (1980).

    Article  CAS  Google Scholar 

  10. S. Balibar, B. Castaing: J. Phys. Lett. 41, L329 (1980).

    Article  Google Scholar 

  11. K.O. Keshishev, A. Ya. Parshin, A.V. Babkin: Sov. Phys. JETP 53, 362 (1981).

    Google Scholar 

  12. P.E. Wolf, S. Balibar, F. Gallet: Phys. Rev. Lett. 51, 1366 (1983). These works are representative only and contain many further references to this extensive literature.

    Article  CAS  Google Scholar 

  13. M. Flytzani-Stephanopoulos, L.D. Schmidt: Prog. Surf. Sci. 9, 83 (1979)

    Article  Google Scholar 

  14. T. Wang, C. Lee, L.D. Schmidt: Surf. Sci. 163, 181 (1985). These articles will serve as an introduction to the literature.

    Article  Google Scholar 

  15. I.N. Stranski: Bull. Soc. Fran. Min. Crist. 79, 359 (1956)

    Google Scholar 

  16. A.-C. Shi: Phys. Rev. B 36, 9068 (1987).

    Article  Google Scholar 

  17. J.C. Heyraud, J.J. Métois: private communication.

    Google Scholar 

  18. J.C. Heyraud: Thesis, Université de Droit, d’Economie et des Sciences d’Aix-Marseille, 1987 (unpublished).

    Google Scholar 

  19. One might worry that the equilibrium shape of the crystallites is influenced by the presence of the graphite substrate and does not represent the shape of a “free” gold crystal. Analysis shows that in the thermodynamic limit the only effect of the substrate is to truncate the free shape. Different substrates truncate it at different levels. See W.L. Winterbottom: Acta Metal. 15, 303 (1967).

    Article  CAS  Google Scholar 

  20. One should not be mislead into thinking that the curved part of the crystal surface is strictly spherical. Although this is approximately true for gold at 1000°C, it is certainly not so in general.

    Google Scholar 

  21. A readable discussion of convexity and its significance in ordinary statistical mechanis is given by R.B. Griffiths in Phase Transitions and Critical Phenomena, ed. C. Domb, M.S. Green (Academic, London 1972) Vol.1, p.7ff

    Google Scholar 

  22. Y. Carmi, S.G. Lipson, E. Polturak: Phys. Rev. B 36, 1894 (1987).

    Article  CAS  Google Scholar 

  23. This is a slight oversimplification. There is good reason to believe that mixtures of type-A and type-B thermal evolution will be seen. The designation should properly speaking attach to specific features of the T=0 crystal shape, according to whether they are (A) or are not (B) “degenerate” in a sense which will be made precise in Sect. 13.4.3.

    Google Scholar 

  24. The polyhedral character of the T=0 crystal shape is believed to be entirely general. D.S. Fisher, J.D. Weeks: Phys. Rev. Lett. 50, 1077 (1983)

    Article  CAS  Google Scholar 

  25. E. Fradkin: Phys. Rev. B 28, 5338 (1983).

    Article  CAS  Google Scholar 

  26. If the force law has the appropriate sign and is not strictly finite in range, then the number of distinct facets can be infinite. This may lead to fractal structure at T=0. Such structure does not persist to nonzero T and will be exceedingly difficult to observe because of kinetic constraints at low temperature. S.E. Burkov: J. Physique 46, 317 (1985)

    Article  CAS  Google Scholar 

  27. S.E. Burkov: J. Physique Lett. 46, L805 (1985)

    Article  Google Scholar 

  28. M. den Nijs, E.K. Reidel, E.H. Conrad, T. Engel: Phys. Rev. Lett. 55, 1689 (1985)

    Article  Google Scholar 

  29. See also L.A. Bol’shov, V.L. Pokrovsky, G.V. Uimin: J. Stat. Phys. 38, 191 (1985).

    Article  Google Scholar 

  30. S. Balibar, B. Castaing: Surf. Sci. Rep. 5, 87 (1985). F. Gallet: Dissertation, Université de Paris (Paris 6), 1986 (unpublished). See also [13.60].

    Article  Google Scholar 

  31. V.L. Pokrovsky, A.L. Talapov: Phys. Rev. Lett. 42, 65 (1979)

    Article  CAS  Google Scholar 

  32. See also P.G. deGennes: J. Chem. Phys. 48, 2257 (1968).

    Article  Google Scholar 

  33. C. Jayaprakash, W.F. Saam: Phys. Rev. B 30, 3916 (1984).

    Article  CAS  Google Scholar 

  34. C. Jayaprakash, C. Rottman, W.F. Saam: Phys. Rev. B 30, 6549 (1984).

    Article  CAS  Google Scholar 

  35. C. Rottman, M. Words: Phys. Rep. 103, 59 (1984)

    Article  CAS  Google Scholar 

  36. C. Rottman, M. Words: Phys. Rev. B 29, 328 (1984).

    Article  CAS  Google Scholar 

  37. A.-C. Shi, M. Wortis: Phys. Rev. B 37, 7793 (1988)

    Article  CAS  Google Scholar 

  38. J.C. Heyraud, J.J. Métois: J. Cryst. Growth 84, 503 (1987) and private communication.

    Article  Google Scholar 

  39. A tricritical behavior in this vicinity was found in [13.22]; however, it is likely that this was due to use of the mean-field approximation.

    Google Scholar 

  40. G. Wulff: Z. Kristaliogr. Mineral. 34, 449 (1901).

    CAS  Google Scholar 

  41. C. Herring: Phys. Rev. 82, 87 (1951)

    Article  CAS  Google Scholar 

  42. See also C. Herring, in: Structure and Properties of Solid Surfaces, ed. by R. Gomer, C.S. Smith (Univ. Chicago Press, Chicago 1953), p.5ff.

    Google Scholar 

  43. This is so provided that the diameter of the solid is small on the scale of the appropriate capillary length, typically of the order of millimeters. For large soft crystals such as in the 4He experiments, gravitational effects must be included in the analysis. See K.O. Keshishev, A. Ya. Parshin, A.I. Shal’nikov: “Surface phenomena in quantum crystals”, in: Physics Reviews Vol.4, ed. I.M. Khalatnikov (Harwood Academic Publishers, Chur 1982), p.l88ff.

    Google Scholar 

  44. In this limit, it can be shown that 2λ = Ps−Pv, the pressure difference between the solid and the vapor. N. Cabrera: Surf. Sci. 2, 320 (1964)

    Article  CAS  Google Scholar 

  45. J.W. Cahn, D.W. Hoffman: Acta Metal. 22, 1205 (1974). For example, it is easy to verify for the isotropic case fi = σ (independent of m̂) that 2λ = 2σ/R.

    Article  Google Scholar 

  46. In writing (13.8b) we have assumed that fi(m̂) is continuous and differentiate. When the crystal is fully faceted, this is not so, and some additional discussion is required (Sect. 13.4.2).

    Google Scholar 

  47. This is sometimes called the Herring construction, if memory serves me. See also F.C. Frank, in: Metal Surfaces, (American Society for Metals, Ohio 1963) Chap.l

    Google Scholar 

  48. J.L. Meijering: Acta Metal. 11, 847 (1963).

    Article  CAS  Google Scholar 

  49. A.F. Andreev: Sov. Phys. JETP 53, 1063 (1981). The result is also implicit in [13.33]. After going through the Legendre transformation, Andreev performs a mean-field calculation, leading to some incorrect conclusions, e.g., that λ = 2.

    Google Scholar 

  50. L.D. Landau, E.M. Lifshitz: Statistical Physics (Pergamon, Oxford 1980), 3rd ed. revised by E.M. Lifshitz, L.P. Pitaevskii, Part 1, p.520ff.

    Google Scholar 

  51. This elementary mathematical fact is notably missing from most thermodynamics texts. A happy exception is H.B. Callen: Thermodynamics and an Introduction to Thermoslatisties (Wiley, New York 1985) p.137ff.

    Google Scholar 

  52. This magnetic analogue was pointed out by N. Garcia, J.J. Saenz, N. Cabrera: Physica 124b, 251 (1984), who exploited it in the context of a mean-field calculation.

    Google Scholar 

  53. In the sense that the intercept fi(m̂) is not on some fixed ordinate axis but rather on the radial line from the origin in the direction m̂.

    Google Scholar 

  54. We shall treat Z(Xl,X2) as single-valued, thus excluding the possibility of local overhangs. This simplification is inessential.

    Google Scholar 

  55. There remains only a trivial difference in sign convention: it would be simple to redifine zk ≡ −∂z/∂xk.

    Google Scholar 

  56. Indeed, in [13.33] it is taken as a proof!

    Google Scholar 

  57. A. Dinghas: Z. Krist. 105, 304 (1944).

    Google Scholar 

  58. J.W. Cahn, J.E. Taylor: Scripta Metall. 18, 1117 (1984)

    Article  CAS  Google Scholar 

  59. J.E. Taylor, J.W. Cahn: Acta Metal. 34, 1 (1986).

    Article  CAS  Google Scholar 

  60. I.N. Stranski, R. Kaischew: Z. Kristallogr. 78, 373 (1931).

    CAS  Google Scholar 

  61. R. Lacmann: N. Jb. Miner. Abh. 122, 36 (1974).

    CAS  Google Scholar 

  62. M. Drechsler: In Surface Mobilities on Solid Materials, ed. by Vu Thien Binh (Plenum, New York 1983) p.405ff.

    Google Scholar 

  63. Phase Transitions and Critical Phenomena, ed. C. Domb, M.S. Green, J.L. Lebowitz (Academic, New York 1972–1982) Vol.1–8.

    Google Scholar 

  64. In d=2 at T>0 the thermal wandering of the steps is sufficiently large so that the step-step interactions cannot be neglected. As a result, there are no facets and no edges at any T>0 and the d=2 crystal shape is always smoothly rounded.

    Google Scholar 

  65. Short length-scale singularities at TR are very weak, so at an atomic scale not much happens to the interface at TR.

    Google Scholar 

  66. See J.D. Weeks: In Ordering in Strongly Fluctuating Condensed Matter Systems, ed. by T. Riste (Plenum, New York 1980)

    Google Scholar 

  67. [Ref.13.34, p.243]

    Google Scholar 

  68. A.J.W. Moore, in: Metal Surfaces: Structure, Energetics and Kinetics (Am. Soc. Metals, Metals Park 1963) pp.155–198.

    Google Scholar 

  69. In practice, defect pinning may also play a role here.

    Google Scholar 

  70. Of course, this kind of an unstable region can never come out of a rigorous statistical mechanical calculation.

    Google Scholar 

  71. We speak here of three dimensions (even though we have been drawing pictures in d=2 for simplicity). In two bulk dimensions, the crystal surface is a one-dimensional system, and, so long as all forces are short-ranged, there can be no phase transition (i.e., no edges) of any kind for T>0.

    Google Scholar 

  72. H.W.J. Blote, H.J. Hilhorst: J. Phys. A 15, L631 (1982)

    Article  Google Scholar 

  73. B. Nienhuis, H.J. Hilhorst, H.W.J. Blote: J. Phys. A 17, 3559 (1984).

    Article  CAS  Google Scholar 

  74. HJ. Schulz: J. Phys. 46, 257 (1985).

    Article  CAS  Google Scholar 

  75. C. Jayaprakash, W.F. Saam, S. Teitel: Phys. Rev. Lett. 50, 2017 (1983)

    Article  CAS  Google Scholar 

  76. W.F. Saam, C. Jayaprakash, S. Teitel, in: Quantum Solids and Fluids, ed. by E.D. Adams, G.G. Ihas (AIP, New York 1983) p.371.

    Google Scholar 

  77. Just as in the usual applications, certain hypotheses are needed to prove in a rigorous way the equivalence between ensembles. These hypotheses serve to control the scale of fluctuations about mean values such as (∂z/∂xk). Hypotheses such as short-range pairwise forces normally suffice. We do not know of any work which addresses ensemble equivalence for the interface problem in a rigorous way. There are also important questions involved in the existence of an interface Hamiltonian such as H[C] and in the proof directly from statistical mechanics of the Wulff construction. Some of these have been discussed in the review article of D.B. Abrahams, in: Phase Transitions and Critical Phenomena, ed. C. Domb, J.L. Lebowitz (Academic, New York 1986), Vol.10, p.2. There now exist a few rigorous results in two dimensions but much remains to be done. It is perhaps worth emphasizing, however, that for ordinary force laws everything in the literature suggests that the conventional viewpoint, which we take here, is correct.

    Google Scholar 

  78. This point of view has been discussed extensively in [13.43]. For a more elementary introduction, see P. Pfeuty, G. Toulouse: Introduction to the Renormalization Group and to Critical Phenomena (Wiley, New York 1977)

    Google Scholar 

  79. See [13.43] and also, e.g., Ordering in Two Dimensions, ed. by S.K. Sinha (North-Holland, New York 1980)

    Google Scholar 

  80. It is important to emphasize here that, although the height fluctuations become infinite in the thermodynamic limit, 1n (L/a) grows so slowly with L that the “liquid-like” effects are difficult or impossible to observe in the laboratory. On short distance scales, rough interfaces and smooth (faceted) interfaces do not look very different.

    Google Scholar 

  81. T. Ohachi, I. Taniguchi: J. Cryst. Growth 65, 84 (1983).

    Article  CAS  Google Scholar 

  82. The behavior of the curvature is analogous to that of the superfluid density of two-dimensional 4He at the Kosterlitz-Thouless transition.

    Google Scholar 

  83. P.E. Wolf, F. Gallet, S. Balibar, E. Rolley, P. Nozières: J. Physique 46, 1987 (1985).

    Article  CAS  Google Scholar 

  84. M. Touzani, M. Wortis: Phys. Rev. B 36, 3598 (1987).

    Article  CAS  Google Scholar 

  85. J.J. Saenz, N. Garcia: Surf. Sci. 155, 24 (1985).

    Article  CAS  Google Scholar 

  86. V.I. Marchenko, A. Ya. Parshin: Sov. Phys. JETP 52, 129 (1981).

    Google Scholar 

  87. K. Rommelse, M. den Nijs: Phys. Rev. Lett. 59, 2578 (1987)

    Article  CAS  Google Scholar 

  88. Edges of this type did appear in [13.22] as the result of a mean-field calculation.

    Google Scholar 

  89. P. Nozières, F. Gallet: J. de Physique (March 1987); F. Gallet, S. Balibar, E. Rolley: J. de Physique (March 1987). See also F. Gallet, P. Nozières, S. Balibar, E. Rolley: Europhys. Lett. 2, 701 (1986).

    Article  Google Scholar 

  90. R. Kariotis, H. Suhl, B. Yang: Phys. Rev. B 32, 4551 (1985).

    Article  CAS  Google Scholar 

  91. Y. He, C. Jayaprakash, C. Rottman: Phys. Rev. B 32, 12 (1985). See also C. Rottman: “Theory of phase transitions at internal interfaces”; J. Physique Colloq. (1988)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wortis, M. (1988). Equilibrium Crystal Shapes and Interfacial Phase Transitions. In: Vanselow, R., Howe, R. (eds) Chemistry and Physics of Solid Surfaces VII. Springer Series in Surface Sciences , vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73902-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73902-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73904-0

  • Online ISBN: 978-3-642-73902-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics