Imaging the Basal Ganglia

  • W. R. W. Martin
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 88)


The rapid implementation of new techniques for imaging the central nervous system is one of the most impressive developments to have taken place in clinical neuroscience in the last decade. Not only have these techniques revolutionized the clinical management of patients with neurological disorders, but in many situations they have advanced our understanding of the pathophysiology of diseases which affect the Brain.


Positron Emission Tomography Basal Ganglion Cereb Blood Flow Cerebral Glucose Metabolism Local Cerebral Glucose Utilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnett CD, Fowler JS, Wolf AP, Logan J, MacGregor RR (1984) Mapping Brain neuroleptic receptors in the live baboon. Biol Psychiatry 19: 1365–1375PubMedGoogle Scholar
  2. Arnett CD, Fowler JS, Wolf AP, Shiue CY, McPherson DW (1985 a) [18F] JV-Methylspiroperidol: the radioligand of choice for PETT studies of the dopamine receptor in human Brain. Life Sci 36: 1359–1366Google Scholar
  3. Arnett CD, Shiue CY, Wolf AP, Fowler JS, Logan J, Watanabe M (1985b) Comparison of three [18F] labelled butyrophenone neuroleptic drugs in the baboon using positron emission tomography. J Neurochem 44: 835–844PubMedCrossRefGoogle Scholar
  4. Baron JC, Comar D, Zarifian E, Agid Y, Crouzel C, Loo H, Deniker P, Kellershohn C (1985) Dopaminergic receptor sites in human Brain: positron emission tomography. Neurology (NY) 35: 16–24Google Scholar
  5. Barr AN, Heinze WJ, Dogger GD, Valvassor GE, Sugar O (1978) Bicaudate index in computerized tomography of Huntington’s disease and cerebral atrophy. Neurology (NY) 28: 1196–1200Google Scholar
  6. Bes A, Guell A, Fabre N, Arne-Bes MC, Geraud G (1983) Effects of dopaminergic agonists (piribedil and bromocriptine) on cerebral blood flow and parkinsonism. J Cereb Blood Flow Metab 3 (Suppl 1): 490–491CrossRefGoogle Scholar
  7. Budinger TF (1985) Quantitative single-photon emission tomography for cerebral flow and receptor distribution imaging. In: Reivich M, Alavi A (eds) Positron emission tomography. Liss, New YorkGoogle Scholar
  8. Burton K, Farrell D, Li D, Calne DB (1984) Lesions of the putamen and dystonia: CT and magnetic resonance imaging. Neurology (NY) 34: 962–965Google Scholar
  9. Bydder GM, Steiner RE, Young IR, Hall AS, Thomas DJ, Marshall J et al. (1982) Clinical NMR imaging of the Brain: 140 cases. Am J Radiol 139: 215–236Google Scholar
  10. Cumming P, Boyes BE, Martin WRW, Adam M, Grierson J, Ruth T, McGeer EG (1987) The metabolism of [18F]6-fluoro-L-3,4-dihydroxyphenylalanine in the hooded rat. J Neurochem 48: 601–608PubMedCrossRefGoogle Scholar
  11. Drayer BP, Olanow CW, Burger P (1986) High field strength resonance imaging in patients with Parkinson’s disease. Neurology (NY) 36 (Suppl 1): 309Google Scholar
  12. Eckelman WC, Reba RC, Rzeszotarski WJ, Gibson RE, Hill T, Holman BL, Budinger T, Conklin JJ, Eng R, Grissom MP (1984) External imaging of cerebral muscarinic acetylcholine receptors. Science 223: 291–293PubMedCrossRefGoogle Scholar
  13. Edvinsson L, Harebo JE, McCulloch J, Owman C (1978) Vasomotor response of cerebral blood vessels to dopamine and dopaminergic agonists. Adv Neurol 20: 85–96PubMedGoogle Scholar
  14. Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human Brain by PET. Science 231: 258–261PubMedCrossRefGoogle Scholar
  15. Firnau G, Garnett E, Sourkes TL, Missala K (1975) [18F] Fluorodopa; a unique gamma emitting substrate for dopa decarboxylase. Experientia 31: 1254–1255Google Scholar
  16. Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140–1144PubMedCrossRefGoogle Scholar
  17. Fox PT, Perlmutter JS, Raichle ME (1985) A stereotactic method of anatomical localization for positron emission tomography. J Comput Assist Tomogr 9: 141–153PubMedCrossRefGoogle Scholar
  18. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4: 727–736PubMedCrossRefGoogle Scholar
  19. Fross RD, Martin WRW, Stoessl AJ, Adam MJ, Ruth TJ, Pate BD, Calne DB (1986) The anatomic basis of dystonia. Neurology (NY) 36 (Suppl 1): 119Google Scholar
  20. Garnett ES, Firnau G, Nahmias C, Sood S, Beibeck L (1980) Blood-Brain barrier transport and cerebral utilization of dopa in living monkeys. Am J Physiol 238: 318–327Google Scholar
  21. Garnett ES, Firnau G, Nahmias C (1983 a) Dopamine visualized in the basal ganglia of living man. Nature 305: 137–138Google Scholar
  22. Garnett ES, Firnau G, Nahmias C, Chirakal R (1983 b) Striatal dopamine metabolism in living monkeys examined by positron emission tomography. Brain Res 280: 169–171Google Scholar
  23. Garnett ES, Firnau G, Nahmias C, Carbotte R, Bartolucci G (1984) Reduced striatal glucose consumption and prolonged reaction time are early features in Huntington’s disease. J Neurol Sci 65: 231–237PubMedCrossRefGoogle Scholar
  24. Glass JP, Jankovic J, Borit A (1984) Hemiballism and metastatic Brain tumor. Neurology (Cleveland) 34: 204–207Google Scholar
  25. Goutieres F, Aicardi J (1982) Acute neurological dysfunction associated with destructive lesions of the basal ganglia in children. Ann Neurol 12: 328–332PubMedCrossRefGoogle Scholar
  26. Guell A, Geraud G, Jauzac P, Victor G, Arne-Bes MC (1982) Effects of a dopaminergic agonist (piribedil) on cerebral blood flow in man. J Cereb Blood Flow Metab 2: 255–257PubMedCrossRefGoogle Scholar
  27. Guttman M, Lang AE, Garnett S, Tyndel F, Gordon A (1986) No consistent abnormality of FDG scanning in SLE chorea: further evidence that striatal hypometabolism is not the correlate of chorea. Neurology (NY) 36 (Suppl 1): 309Google Scholar
  28. Hayden MR, Martin WRW, Stoessl AJ, Clark C, Hollenberg S, Adam MJ, Ammann W, Harrop R, Rogers J, Ruth T, Sayre C, Pate BD (1986) Positron emission tomography in the early diagnosis of Huntington disease. Neurology (NY) 36: 888–894Google Scholar
  29. Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 24: 782–789PubMedGoogle Scholar
  30. Hill TC, Holman BL, Lovett R, O’Leary DH, Front D, Magistretti P, Zimmerman RE, Moore S, Clouse ME, Wu JL, Lin TH, Baldwin RM (1982) Initial experience with SPECT (single photon computerized tomography) of the Brain using N-isopropyl I-123-p-iodoamphetamine. J Nucl Med 23: 191–195PubMedGoogle Scholar
  31. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kühl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 128: E69–E82Google Scholar
  32. Junck L, Gilman S, Hickwa RD, Young AB, Markel DS, Ehrenkaufer RLE (1986) PET studies of local cerebral glucose metabolism in idiopathic torsion dystonia. Neurology (NY) 36 (Suppl 1): 182Google Scholar
  33. Kilbourn MR, Zalutsky MR (1985) Research and clinical potential of receptor based radiopharmaceuticals. J Nucl Med 26: 655–662PubMedGoogle Scholar
  34. Kozachuk W, Salanga V, Conomy J, Smith A (1986) MRI (magnetic resonance imaging) in Huntington’s disease. Neurology (NY) 36 (Suppl 1): 310Google Scholar
  35. Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, Lear JL, Wu JL, Lin TH, Phelps ME (1982 a) Quantifying local cerebral blood flow by N-isopropyl-p-[123I]iodoamphetamine (IMP) tomography. J Nucl Med 23: 196–203Google Scholar
  36. Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982 b) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12: 425–434Google Scholar
  37. Kuhl DE, Metter EJ, Reige WH (1984) Patterns of local cerebral glucose utilization determined in Parkinson’s disease by the [18F]fluorodeoxyglucose method. Ann Neurol 15: 419–424PubMedCrossRefGoogle Scholar
  38. Kuhl DE, Markham CH, Metter EJ, Riege WH, Phelps ME, Mazziotta JC (1985) Local cerebral glucose utilization in symptomatic and presymptomatic Huntington’s disease. In: Sokoloff L (ed) Brain imaging and Brain function. Raven, New York, pp 199–209Google Scholar
  39. Lang AE, Garnett ES, Firnau G, Nahmias C, Talalla A (1988) Positron tomography in dystonia. Adv Neurol 50. Dystonia 2. Eds. Fahn S, Marsden CD, Calne DB. 249–253Google Scholar
  40. Lange H, Thorner G, Hopf A, Schroder KF (1976) Morphometric studies of the neuropathological changes in choreatic disease. J Neurol Sci 28: 401–425PubMedCrossRefGoogle Scholar
  41. Lawler GA, Pennock JM, Steiner RE, Jenkins WJ, Sherlock S, Young IR (1983) Nuclear magnetic resonance (NMR) imaging in Wilson’s disease. J Comput Assist Tomogr 7: 1–8PubMedCrossRefGoogle Scholar
  42. Leenders KL, Wolfson L, Gibbs JM, Wise RJS, Causon R, Jones T, Legg NJ (1985) The effects of L-dopa on regional cerebral blood flow and oxygen metabolism in patients with Parkinson’s disease. Brain 108: 171–191PubMedCrossRefGoogle Scholar
  43. Leenders KL, Poewe WH, Palmer AJ, Brenton DP, Frackowiak RSJ (1986 a) Inhibition of L-[18F] fluorodopa uptake into human Brain by amino acids demonstrated by positron emission tomography. Ann Neurol 20: 258–261Google Scholar
  44. Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, Nahmias C, Jones, Marsden CD (1986b) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49: 853–860PubMedCrossRefGoogle Scholar
  45. Leenders KL, Frackowiak R, Quinn N, Marsden CD (1986 c) Brain energy metabolism and dopaminergic function in Huntington’s disease measured in vivo using positron emission tomography. Movement Disorders 1: 69–78Google Scholar
  46. Leenders KL, Frackowiak RSJ, Quinn N, Brooks D, Sumner D, Marsden CD (1986 d) Ipsilateral blepharospasm and contralateral hemidystonia and parkinsonism in a patient: CT, MRI, and PET scanning. Movement Disorders 1: 51–58Google Scholar
  47. Littrup PJ, Gebarski SS (1985) MR imaging of Hallervorden-Spatz disease. J Comput Assist Tomogr. 9: 491–493PubMedCrossRefGoogle Scholar
  48. Lodder J, Baard WC (1981) Paraballism caused by bilateral hemorrhagic infarctions in the basal ganglia. Neurology (NY) 31: 484–486Google Scholar
  49. Martin JP (1957) Hemichorea (hemiballism) without lesions in the corpus luysii. Brain 80: 1–10PubMedCrossRefGoogle Scholar
  50. Martin WRW, Beckman JH, Calne DB, Adam MJ, Harrop R, Rogers JG, Ruth TJ, Sayre CI, Pate BD (1984) Cerebral glucose metabolism in Parkinson’s disease. Can J Neurol Sci II (Suppl): 169–173Google Scholar
  51. Martin WRW, Boyes BE, Leenders KL, Patlak CS (1985) Method for the quantitative analysis of 6-fluorodopa uptake data from positron emission tomography. J Cereb Blood Flow Metab (Suppl l):593–594Google Scholar
  52. Martin WRW, Stoessl AJ, Adam MJ, Ammann W, Bergstrom M, Harrop R, Laihinen A, Rogers JG, Ruth TJ, Sayre CI, Pate BD, Calne DB (1987) Positron emission tomography in Parkinson’s disease: glucose and dopa metabolism. Adv Neurol 45: 95–98PubMedGoogle Scholar
  53. Martin WRW, Stoessl AJ, Palmer M, Adam MJ, Ruth TJ, Grierson JR, Pate BD, Calne DB (1988) PET scanning in dystonia. Adv Neurol 50. Dystonia 2. Eds. Fahn S, Marsden CD, Calne DB. 223–229Google Scholar
  54. Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34: 213–215PubMedCrossRefGoogle Scholar
  55. Maziere JB, Loc’h C, Hantraye P, Guillon R, Duquesnoy N, Soussaline F, Naquet R, Comar D, Maziere M (1984) 76Br-bromospiroperidol: a new tool for quantitative in vivo imaging of neuroleptic receptors. Life Sci 35: 1349–1356Google Scholar
  56. Mazziotta JC, Phelps ME, Pahl J, Huang SC, Wapenski J, Baxter LR, Riege W, Kuhl DE, Selin C, Sumida R, Markham CH (1986) Caudate hypometabolism in asymptomatic subjects at risk for Huntington’s disease. J Nucl Med 27: 920Google Scholar
  57. McGeer PL, McGeer EG, Suzuki JS (1977) Aging and extrapyramidal function. Arch Neurol 34: 33–35PubMedCrossRefGoogle Scholar
  58. Mintun MA, Raichle ME, Kilbourne MR, Wooten GF, Welch MJ (1984 a) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15: 217–227Google Scholar
  59. Mintun MA, Raichle ME, Martin WRW, Herscovitch P (1984 b) Brain oxygen utilization measured with 0–15 radiotracers and positron emission tomography. J Nucl Med 25: 177–187Google Scholar
  60. Moerlein SM, Laufer P, Stocklin G, Pawlak, Wienhard K, Heiss WD (1986) Evaluation of 75Br-labelled butyrophenone neuroleptics for imaging cerebral dopaminergic receptor areas using positron emission tomography. Eur J Nucl Med 12: 211–216PubMedCrossRefGoogle Scholar
  61. Nahmias C, Garnett ES, Firnau G, Lang A (1985) Striatal dopamine distribution in parkinsonian patients during life. J Neurol Sci 69: 223–230PubMedCrossRefGoogle Scholar
  62. Narbona J, Obeso JA, Tonon T, Martinez-Lage JM, Marsden CD (1984) Hemidystonia secondary to localized basal ganglia tumor. J Neurol Neurosurg Psychiatry 47: 704–709PubMedCrossRefGoogle Scholar
  63. Norman D, Brant-Zawadzki M (1985) Magnetic resonance imaging of the central nervous system. In: Sokoloff L (ed) Brain imaging and Brain function. Raven, New York, p 259–269Google Scholar
  64. Novotny EJ, Singh G, Wallace DC, Dorfman LJ, Louis A, Sogg RL, Steinman (1986) Leber’s disease and dystonia: a mitochondrial disease. Neurology (NY) 36: 1053–1060Google Scholar
  65. Oepen G, Ostertag C (1981) Diagnostic value of CT in patients with Huntington’s chorea and their offspring. J Neurol 225: 189–196PubMedCrossRefGoogle Scholar
  66. Oldendorf WH (1985) Principles of imaging structure by NMR. In: Sokoloff L (ed) Brain imaging and Brain function. Raven, New York, pp 245–257Google Scholar
  67. Palella TD, Hichwa RD, Ehrenkaufer RC, Rothley JM, McQuillan MA, Young AB, Kelley WN (1985) 18F-fluorodeoxyglucose PET scanning in HPRT deficiency. Am J Hum Genet 37: A70Google Scholar
  68. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-Brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3: 1–7PubMedCrossRefGoogle Scholar
  69. Perlmutter JS, Raichle ME (1985) Regional blood flow in hemiparkinsonism. Neurology (NY) 35: 1127–1134Google Scholar
  70. Perlmutter JS, Larsen KB, Raichle ME, Markham J, Mintun MA, Kilbourn MR, Welch MJ (1986) Strategies for in vivo measurement of receptor binding using positron emission tomography. J Cereb Blood Flow Metab 6: 154–169PubMedCrossRefGoogle Scholar
  71. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6: 371–388PubMedCrossRefGoogle Scholar
  72. Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H215O. II. Implementation and validation. J Nucl Med 24: 790–798PubMedGoogle Scholar
  73. Raichle ME, Perlmutter JS, Fox PT (1984) Parkinson’s disease: metabolic and pharmacological approaches with positron emission tomography. Ann Neurol 15 (Suppl): 131–134CrossRefGoogle Scholar
  74. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137PubMedGoogle Scholar
  75. Rougemont D, Baron JC, Collard P, Bustany P, Comar D, Agid Y (1984) Local cerebral glucose utilisation in treated and untreated patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 47: 824–830PubMedCrossRefGoogle Scholar
  76. Sax DS, Buonanno FS (1986) Putaminal changes in spin-echo magnetic resonance imaging signal in bradykinetic/rigid form of Huntington’s disease. Neurology (NY) 36 (Suppl 1): 311Google Scholar
  77. Sax DS, Buonanno FS, Kramer C, Miatto O, Kistler JP, Martin JB, Brady TJ (1985) Proton nuclear magnetic resonance imaging in Huntington’s disease. Ann Neurol 18: 142Google Scholar
  78. Seeman P, Ulpian C, Bergeron JC, Riederer P, Jellinger K, Gabriel E, Reynolds GP, Tourtelotte WW (1985) Bimodal distribution of dopamine receptor densities in Brain of schizophrenics. Science 225: 728–731CrossRefGoogle Scholar
  79. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara N (1977) The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916PubMedCrossRefGoogle Scholar
  80. Stober T, Wussow W, Schimrigk K (1984) Bicaudate diameter—the most specific and simple CT parameter in the diagnosis of Huntington’s disease. Neuroradiology 26: 25–28PubMedCrossRefGoogle Scholar
  81. Stoessl AJ, Hayden MR, Martin WRW, Clark C, Pate BD (1986 a) Predictive studies in Huntington’s disease. Neurology (NY) 36(Suppl 1 ): 310Google Scholar
  82. Stoessl AJ, Martin WRW, Hayden MR, Adam MJ, Ruth TJ, Rajput A, Pate BD, Calne DB (1986 b) Dopamine in Huntington’s disease: studies using positron emission tomography. Neurology (NY) 36 (Suppl 1 ): 310Google Scholar
  83. Stoessl AJ, Martin WRW, Clark C, Adam MJ, Ammann W, Beckman JH, Bergstrom M, Harrop R, Rogers JG, Sayre CI, Pate BD, Calne DB (1986 c) PET studies of cerebral glucose metabolism in idiopathic torticollis. Neurology (NY) 36: 653–657Google Scholar
  84. Starosta-Rubinstein S, Young AB, Kluin K, Hill GM, Aisen AM, Gabrielsen T, Brewer GJ (1985) Quantitative clinical assessment of 25 Wilson’s patients: correlation with structural changes on MRI. Neurology 35 (Suppl 1): 175Google Scholar
  85. Suchowersky O, Hayden MR, Martin WRW, Stoessl AJ, Hildebrand AM, Pate BD, (1986) Cerebral metabolism of glucose in benign hereditary chorea. Movement Disorders 1: 33–44PubMedCrossRefGoogle Scholar
  86. Wagner HN Jr. Burns HD, Dannais RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human Brain by positron emission tomography. Science 221: 1264–1266PubMedCrossRefGoogle Scholar
  87. Williams F, John B, Walshe JM (1981) Wilson’s disease. An analysis of the cranical computerized tomographic appearances found in 60 patients and the changes in response to treatment with chelating agents. Brain 104: 735–752PubMedCrossRefGoogle Scholar
  88. Wolfson LI, Leenders KL, Brown LL, Jones T (1985) Alterations of regional cerebral blood flow and oxygen metabolism in Parkinson’s disease. Neurology (NY) 35: 1399–1405Google Scholar
  89. Wong DF, Wagner HN Jr, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglass KH, Petronis JD, Folstein JK, Toung JKT, Burns HD, Kuhar MJ (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human Brain. Science 226: 1393–1396PubMedCrossRefGoogle Scholar
  90. Wong DF, Gjedde A, Wagner HN (1986 a) Quantification of neuroreceptors in the living human Brain. I. Irreversible binding of ligands. J Cereb Blood Flow Metab 6: 137–146Google Scholar
  91. Wong DF, Gjedde A, Wagner HN Jr, Dannals RF, Douglass KH, Links JM, Kuhar MJ (1986 b) Quantification of neuroreceptors in the living human Brain. II. Inhibition studies of receptor density and affinity. J Cereb Blood Flow Metab 6: 147–153Google Scholar
  92. Wooten GF, Collins RC (1981) Metabolic effects of unilateral lesions of the substantia nigra. J Neurosci 1: 285–291PubMedGoogle Scholar
  93. Young AB, Frey KA, Agranoff BW ( 1986 a) Receptor assays: in vitro and in vivo. In: Phelps M, Mazziotta J, Schelbert H (eds) Positron emission tomography and autoradiography: principles and applications for the Brain and heart. Raven, New YorkGoogle Scholar
  94. Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Jewett D, Rothley J, Betley A, Hichwa R (1986b) Persons at-risk for Huntington’s disease: Brain metabolism determined with 18F-FDG. J Nucl Med 27: 920Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • W. R. W. Martin

There are no affiliations available

Personalised recommendations