Skip to main content

Receptors in the Basal Ganglia

  • Chapter
  • 310 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 88))

Abstract

The study of both presynaptic and postsynaptic markers of neurotransmitter systems in the basal ganglia has afforded a great deal of information about the function of specific neuronal pathways in health and disease. In Parkinson’s disease, the emphasis has been on the study of dopamine presynaptic and postsynaptic elements. Other neurotransmitter abnormalities, however, have been observed in this and other basal ganglia diseases. This chapter will focus on the normal distribution of neurotransmitter receptors in human basal ganglia and the receptor abnormalities observed in Parkinson’s disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Khalil B, Young AB, Penney JB (1984) Evidence for the presynaptic localization of opiate binding sites on striatal efferent fibers. Brain Res 323: 21–29

    Article  PubMed  CAS  Google Scholar 

  • Afsharpour S, Penney GR, Kitai ST (1984) Glutamic acid decarboxylase, leucine-enkephalin and substance-P immunoreactive neurons in the neostriatum of the rat and cat (abstract). Soc Neurosci 14: 702

    Google Scholar 

  • Anderson PH, Gronvald FC, Jansen JA (1985) A comparison between dopamine-stimulated adenylate cyclase and [3H]SCH23 390 binding in rat striatum. Life Sci 37: 1971–1983

    Article  Google Scholar 

  • Aronin N, Di Figlia M, Graveland GA, Schwartz WJ, Wu JY (1984) Localization of immunoreactive enkephalins in GABA synthesizing neuron of the rat striatum. Brain Res 300: 376–80

    Article  PubMed  CAS  Google Scholar 

  • Barone P, Davis TA, Braun AR, Chase TN (1986) Dopaminergic mechanisms and motor function: characterizations of D1 and D2 dopamine receptor interactions. Eur J Pharmacol 123: 109–114

    Article  PubMed  CAS  Google Scholar 

  • Bennett JP, Wooten GF (1986) Dopamine denervation does not alter in vivo 3H-spiperone binding in rat striatum: implications for external imaging of dopamine receptors in Parkinson’s disease. Ann Neurol 19: 378–383

    Article  PubMed  CAS  Google Scholar 

  • Cash R, Raisman R, Ruberg M, Agid Y (1984 a) Adrenergic receptors in frontal cortex in human brain. Eur J Pharmacol 108: 225–232

    Google Scholar 

  • Cash R, Ruberg M, Raisman R, Agid Y (1984b) Adrenergic receptors in Parkinson’s disease. Brain Res 322: 269–275

    Article  PubMed  CAS  Google Scholar 

  • Cash R, Lasbennes F, Sercombe R, Seylaz J, Agid Y (1985) Adrenergic receptors on cerebral microvessels in control and parkinsonian subjects. Life Sci 37: 531–536

    Article  PubMed  CAS  Google Scholar 

  • Christensen AV, Arnt J, Hyttel J, Larsen JJ, Svendsen O (1984) Pharmacological effects of a specific dopamine agonist SCH23 390 in comparison with neuroleptics. Life Sci 34: 1529–1540

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt D, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of anti-schizophrenic drugs. Science 192: 481–483

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt D, Snyder SH (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197: 596–598

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Hamblin MW, Leff SE, Sibley D (1983) The classification of dopamine receptors: relationship to radioligand binding. Annu Rev Neurosci 6: 43–57

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Gehlert D, Yamamura HI, Barnett A, Wamsley JK (1985) D1 dopamine receptors in rat brain: autoradiographic localization using [3H] SCH23 390. Eur J Pharmacol 108: 323–325

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Gehlert DR, Filloux FM, Wamsley JK (1986) A quantitative autoradiographic comparison of the density and localization of dopamine D1 and D2 receptor in rat brain: effects of neurotoxins (abstract). Soc Neurosci 12: 481

    Google Scholar 

  • Dubois A, Savasta M, Curet O, Scatton B (1986) Autoradiographic distribution of the Di agonist [3H] SKF38 393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors. NeuroScience 19: 125–137

    Article  PubMed  CAS  Google Scholar 

  • Filloux FM, Dawson TM, Gehlert DR, Wamsley JK (1986) A quantitative autoradiographic comparison of the effects of unilateral striatal and nigral neurotoxin lesion in the rat brain on [3H] SCH23 390 and [3H]-Forskolin binding sites (abstract). Soc Neurosci 12: 481

    Google Scholar 

  • Fonnum F, Gottesfeld A, Grofova I (1978) Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentopeduncular and striatonigral GABAergic fibres. Brain Res 143: 125–38

    Article  PubMed  CAS  Google Scholar 

  • Frey KA, Hichwa RD, Ehrenkaufer RLE, Agranoff BW (1985) Quantitative in vivo receptor binding III: tracer kinetic modeling of muscarinic cholinergic receptor binding. Proc Natl Acad Sci USA 82: 6711–6715

    Article  PubMed  CAS  Google Scholar 

  • Frey KA, Agranoff BW, Young AB, Hichwa RD, Ehrenkaufer, RLE (1986) Human brain receptor distribution. Science 232: 1269–1271

    Article  PubMed  CAS  Google Scholar 

  • Grigoriadis D, Seeman P (1984) The dopamine/neuroleptic receptor. Can J Neurol Sci 11: 108–113

    PubMed  CAS  Google Scholar 

  • Guttman M, Seeman P (1985) L-Dopa reverses the elevated density of D2 dopamine receptors in Parkinson’s diseased striatum. J Neural Transm 64: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Seeman P, Reynolds GP, Riederer P, Jellinger K, Tourtellotte WW (1985) Dopamine D2 receptor density remains constant in treated Parkinson’s disease. Ann Neurol 19: 487–492

    Article  Google Scholar 

  • Haber SN, Watson SJ (1985) The comparative distribution of enkephalin, dynorphin and substance P in the human globus and basal forebrain. NeuroScience 14: 1011–24

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Pert CB (1981) In vitro autoradiography of opiate receptors in rat brain suggest loci of “opiatergic” pathways. Proc Natl Acad Sci USA 77: 5532–5536

    Article  Google Scholar 

  • Herrera-Marschitz M, Ungerstedt U (1984) Evidence that striatal efferents relate to dif-ferent dopamine receptors. Brain Res 323: 269–278

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1983) Brain neurotransmitter changes in Parkinson’s disease. In: Marsden CD, Fahn S (eds) Movement disorders. Butterworth, London, pp 41–58

    Google Scholar 

  • Hyttel J (1983) SCH 23 390—The first selective dopamine Dj antagonist. Eur J Pharmacol 91: 153–154

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Petzold GL, Greengard P (1972) Dopamine sensitive adenylcyclase in caudate nucleus of rat brain and its similarity to the “dopamine receptor”. Proc Natl Acad Sci USA 69: 2145–2149

    Article  PubMed  CAS  Google Scholar 

  • Kuhar MJ (1985) The mismatch problem in receptor mapping studies. Trends Neurosci 8: 190–191

    Article  CAS  Google Scholar 

  • Lee T, Seeman P, Rajput A, Farlye IJ, Hornykiewicz O (1978) Receptor basis for dopaminergic supersensitivity in Parkinson’s disease. Nature 273: 59–61

    Article  PubMed  CAS  Google Scholar 

  • Leff SE, Creese I (1983) Dopamine receptors re-explained. Trends Pharmacol Sci 463–467

    Google Scholar 

  • Nagatsu T, Kanamori T, Kato T, Iizuka R, Narabayashi H (1978) Dopamine-stimulated adenylate cyclase activity in the human brain: changes in parkinsonism. Biochem Med 19: 360–365

    Article  PubMed  CAS  Google Scholar 

  • Nagy JI, Carter DA, Fibiger HC (1978) Anterior striatal projections to the globus pallidus, entopeduncular nucleus and substantia nigra in the rat: the GABA connection. Brain Res 158: 15–29

    Article  PubMed  CAS  Google Scholar 

  • Oertel WH, Riethmuler G, Mugnaini E et al. (1983) Opioid peptide-like immunoreactivity localized in GABAergic neurons of rat neostriatum and central amygdaloid nucleus. Life Sci 33 (Suppl 1): 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Onali P, Olianas MC, Gessa GL (1985) Characterization of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatum. Mol Pharmacol 28: 138–145

    PubMed  CAS  Google Scholar 

  • Pan HS, Penney JB, Young AB (1985) GABA and benzodiazepine receptor changes induced by unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. J Neurochem 45: 1396–1404

    Article  PubMed  CAS  Google Scholar 

  • Parsons B, Rainbow TC (1984) High-affinity binding sites for [3H]MPTP may correspond to monoamine oxidase. Eur J Pharmacol 102: 375–377

    Article  PubMed  CAS  Google Scholar 

  • Penney JB, Pan HS (1986) Quantitative autoradiography of GABA and benzodiazepine binding in studies of mammalian and human basal ganglia function. In: Boast C, Snowhill EW, Altar CA (eds) Quantitative receptor autoradiography. Liss, New York, pp 29–52

    Google Scholar 

  • Penney JB, Young AB (1982) Quantitative autoradiography of neurotransmitter receptors in Huntington’s disease. Neurology (NY) 32: 1391–1395

    Google Scholar 

  • Penney JB, Pan HS, Young AB, Frey KA, Dauth GW (1981) Quantitative autoradiography of [3H] muscimol binding in rat brain. Science 214: 1036–1038

    Article  PubMed  CAS  Google Scholar 

  • Penney JB, Young AB, Walker FO, Shoulson I (1983) Quantitative autoradiography of opiate receptors in Huntington’s and Parkinson’s disease. Neurology (NY) 34 (Suppl 1): 153

    Google Scholar 

  • Perlmutter JS, Raichle ME (1986) In vitro and in vivo receptor binding: where does the truth lie? Ann Neurol 19: 384–385

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter JS, Larson KB, Raichle ME, Markeham J, Mintun MA, Kilbourn MR, Welch MF (1986) Strategies for in vivo measurement of receptor binding using positron emission tomography. J Cereb Blood Flow Metab 6: 154–169

    Article  PubMed  CAS  Google Scholar 

  • Pijnenberg AJJ, Honig WMM, Van Rossum JM (1975) Inhibition of d-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat. Psychopharmacology (Berlin) 41: 87–95

    Article  Google Scholar 

  • Pimoule C, Schoemaker H, Javory-Agid F, Scatton B, Agid Y, Langer SZ (1983) Decrease in [3H] cocaine binding to the dopamine transporter in Parkinson’s disease. Eur J Pharmacol 95: 145–146

    Article  PubMed  CAS  Google Scholar 

  • Pimoule C, Schoemaker H, Reynolds GP, Langer SZ (1985) [3H]SCH23 390 labeled Di dopamine receptors are unchanged in schizophrenia and Parkinson’s disease. Eur J Pharmacol 114: 235–237

    Google Scholar 

  • Quiko M, Spokes EG, Mackay AVP, Bannister R (1979) Alterations in 3H-spiroperidol binding in human caudate nucleus, substantia nigra and frontal cortex in the Shy-Drager syndrome and Parkinson’s disease. J Neurol Sci 43: 429–437

    Article  Google Scholar 

  • Quinton RM, Halliwell G (1963) Effects of alpha-methyldopa and dopa on amphetamine excitatory response in reserpinized rats. Nature 200: 178–179

    Article  PubMed  CAS  Google Scholar 

  • Raisman R, Cash R, Agid Y (1986) Parkinson’s disease: decreased density of 3H-imipramine and 3H-paroxetine binding sites in putamen. Neurology (NY) 36: 556–560

    CAS  Google Scholar 

  • Randup A, Munkvad I, Udsen P (1963) Adrenergic mechanisms and amphetamine induced abnormal behavior. Acta Pharmacol Toxicol 20: 145–157

    Article  Google Scholar 

  • Reisine TD, Fields JZ, Yamamura HI, Bird ED, Spokes E, Schreiner PS, Enna SJ (1977) Neurotransmitter receptor alterations in Parkinson’s disease. Life Sci 21: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Reisine TD, Rossor M, Spokes E, Iverson LL, Yamamura HI (1979) Alterations in brain opiate receptors in Parkinson’s disease. Brain Res 173: 378–382

    Article  PubMed  CAS  Google Scholar 

  • Richfield EK, Debowey DL, Penney JB, Young AB (1987 a) Basal ganglia and cerebral cortical distribution of dopamine D1 and D2 receptors in neonatal and adult cat brain. Neurosci Lett 73: 203–208

    Google Scholar 

  • Richfield EK, Young AB, Penney JB (1987 b) Comparative distribution of dopamine D1 and D2 receptors in the basal ganglia of turtle, pigeon, rat, cat and monkey. J Comp Neurol 262: 446–463

    Google Scholar 

  • Rinne UK (1982) Brain neurotransmitter receptors in Parkinson’s disease. In: Marsden CD, Fahn S (eds) Movement disorders. Butterworth, London, pp 59–74

    Google Scholar 

  • Rinne UK, Lonnberg P, Koskinen V (1981) Dopamine receptors in the parkinsonian brain. J Neural Transm 51: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Rinne JK, Laakso K, Lonnberg P, Rinne UK (1985) Dopamine D1 receptors in the parkinsonian brain. Brain Res 359: 306–310

    Article  PubMed  CAS  Google Scholar 

  • Schulz DW, Stanford EJ, Wyrick SW, Mailman RB (1985) Binding of [3H] SCH23 390 in rat brain: regional distribution of effects of assay conditions and GTP suggest interactions at a Drlike dopamine receptor. J Neurochem 45: 1601–1611

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsyhotic-drugs and dopamine direct binding assays. Proc Natl Acad Sci USA 72: 4376–4380

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic-dopamine receptors. Nature 26: 717–719

    Article  Google Scholar 

  • Shibuya M (1979) Dopamine-sensitive adenylate cyclase activity in the striatum in Parkinson’s disease. J Neural Transm 44: 287–295

    Article  PubMed  CAS  Google Scholar 

  • Spano PF, Trabucchi M, Di Chiara G (1977) Localization of nigral dopamine-sensitive adenylate cyclase on neurons originating in the corpus striatum. Science 196: 1343–1345

    Article  PubMed  CAS  Google Scholar 

  • Stoof JC, Kebabian JW (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 35:2281–2296

    Article  PubMed  CAS  Google Scholar 

  • Titus RD, Kornfeld EC, Jones ND, Clemens JA, Smalstig EB, Fuller RW, Hahn RA, Hynes MD, Mason NR, Wong DT, Foreman MM (1983) Resolution and absolute configuration of an ergoline-related dopamine agonist, trans-4,4a,5,6,7,8,8a,9-octo-hydro-5-propyl-lH (or 2H)-pyrazolo [3,4-g]quinoline. J Chem 26: 1112–1116

    CAS  Google Scholar 

  • Uhl GR, Whitehouse PJ, Price DL, Tourtelotte WW, Kuhar MJ (1984) Parkinson’s disease: depletion of substantia nigra neurotensin receptors. Brain Res 308: 186–190

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR, Javitch JA, Snyder SH (1985) Normal MPTP binding in parkinsonian substantia nigra: evidence for extraneuronal toxin conversion in human brain. Lancet 1: 956–958

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR, Hackney GO, Torchia M, Stranov V, Tourtellotte WW, Whitehouse PJ, Tran V, Strittmatter S (1986) Parkinson’s disease: nigral receptor changes support peptidergic role in nigrostriatal modulation. Ann Neurol 20: 194–203

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol Scand [Suppl] 367: 69–93

    CAS  Google Scholar 

  • Ungerstedt U (1979) Central dopamine mechanisms and unconditioned behavior. In: Horn AS, Kork J, Westerink BHC (eds) The Neurobiology of Dopamine. Academic, London, pp 577–596

    Google Scholar 

  • Wagner HN Jr, Burns HD, Dannais RF, Wong DF, Langstrom B, Kuhar MJ (1983) Imaging dopamine receptors in human brain by positron tomography. Science 221: 1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Walker FO, Young AB, Penney JB, Dorovini-Zis, Shoulson I (1984) Benzodiazepine receptors in early Huntington’s disease. Neurology (NY) 34: 1237–1240

    CAS  Google Scholar 

  • Watson SJ, Khachaturian H, Akil H et al. (1982) Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science 218: 1134–36

    Article  PubMed  CAS  Google Scholar 

  • Wong DF, Gjedde A, Wagner HN (1986 a) Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands. J Cereb Blood Flow Metab 6: 137–146

    Google Scholar 

  • Wong DF, Gjedde A, Wagner HN, Dannais RF, Douglas KH, Links JM, Kuhar MJ (1986 b) Quantification of neuroreceptors in the living human brain. II. Inhibition studies of receptor density and affinity. J Cereb Blood Flow Metab 6: 147–153

    Google Scholar 

  • Young AB, Penney JB (1984) Neurochemical anatomy of movement disorders. Neurol Clin 2 (3): 417–433

    PubMed  CAS  Google Scholar 

  • Young AB, Frey KA, Agranoff BW (1985) Receptor assays: in vivo and in vitro. In: Phelps M, Mazziotta JC, Schelbert H (eds) Tracer kinetic studies of cerebral and myocardial function: positron emission tomography and autoradiography. Raven, New York, pp 73–111

    Google Scholar 

  • Young WS III, Kuhar MJ (1979) A new method for receptor autoradiography [3H] opioid receptor labelling in mounted tissue sections. Brain Res 179: 255–270

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Young, A.B., Penney, J.B. (1989). Receptors in the Basal Ganglia. In: Calne, D.B. (eds) Drugs for the Treatment of Parkinson’s Disease. Handbook of Experimental Pharmacology, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73899-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73899-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73901-9

  • Online ISBN: 978-3-642-73899-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics