Advertisement

The Role of Dopamine in the Control of Neurobiological Functions

  • P. Riederer
  • E. Sofic
  • C. Konradi
  • J. Kornhuber
  • H. Beckmann
  • M. Dietl
  • G. Moll
  • G. Hebenstreit
Part of the Basic and Clinical Aspects of Neuroscience book series (BASIC, volume 3)

Abstract

It is only 30 years since dopamine (DA) was first measured in human brain tissue by Sano [98] (Fig.1). One year later Ehringer and Hornykiewicz [34] demonstrated a striatal DA deficiency in Parkinson’s disease, and 1 year after that it was shown that the symptoms of the disease could be reversed by L-DOPA, the precursor amino acid of DA [5, 7]. Both the experimental and the clinical findings confirmed earlier studies by Carlsson and his coworkers [16] which had led them to conclude that a deficiency of DA might be an essential factor underlying extrapyramidal disorders in general, and Parkinson’s disease in particular. Since that time a wealth of biochemical and pharmacological evidence has favoured the assumption that the nigrostriatal DA system shows a plasticity of adaptational processes unique among the various neurotransmitter systems [41]. Parkinson’s disease is an excellent model for the demonstration of this complex regulating activity of DA neurons arising mainly in the substantia nigra pars compacta.

Keywords

Tyrosine Hydroxylase Ventral Tegmental Area Tardive Dyskinesia Mammalian Spinal Cord Spiperone Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambani LM, van Woert MH, Murphy S (1975) Brain peroxidase and catalase in Parkinson’s disease. Arch Neurol 32: 114–118PubMedGoogle Scholar
  2. 2.
    Arai H, Kosaka K, Iizuka R (1984) Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J Neurochem 43: 388–393PubMedGoogle Scholar
  3. 3.
    Backlund EO, Grandberg PO, Hamberger B (1985) Transplantation of adrenal medulla tissue to striatum in parkinsonism: first clinical trials. J Neurosurg 62: 169–173PubMedGoogle Scholar
  4. 4.
    Barbeau A, Murphy CF, Sourkes TL (1961) Excretion of dopamine in diseases of basal ganglia. Science 133: 1706PubMedGoogle Scholar
  5. 5.
    Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20: 415–455PubMedGoogle Scholar
  6. 6.
    Bhatnagar RK, Arneric SP, Cannon JG, Flynn J, Long JP (1982) Structur activity relationships of presynaptic dopamine receptor agonists. Pharmacol Biochem Behav 17(Supp 1): 11–19PubMedGoogle Scholar
  7. 7.
    Birkmayer W, Hornykiewicz O (1961) Der L-Dioxyphenylalanin ( = DOPA-)Effekt bei der Parkinson-Akinese. Wien Klin Wochenschr 73: 787–788PubMedGoogle Scholar
  8. 8.
    Birkmayer W, Hornykiewicz O (1976) Advances in Parkinsonism. Roche, BaselGoogle Scholar
  9. 9.
    Birkmayer W, Knoll J, Riederer P, Youdim MBH (1983) (—)Deprenyl leads to prolongation of L-DOPA efficacy in Parkinson’s disease. Mod Probl Pharmacopsychiatry 19: 170–176PubMedGoogle Scholar
  10. 10.
    Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson’s disease: a long term study. J Neural Transm 64: 113–127PubMedGoogle Scholar
  11. 11.
    Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam, pp 55–122Google Scholar
  12. 12.
    Björklund A, Dunnet SB, Stenevi U, Lewis ME, Iversen SD (1980) Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 199: 307–333PubMedGoogle Scholar
  13. 13.
    Bowen DM, Smith CB, White P, Davison A (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99: 459–496PubMedGoogle Scholar
  14. 14.
    Bowers MB (1974) Central dopamine turnover in schizophrenic syndromes. Arch Gen Psychiatry 31: 50PubMedGoogle Scholar
  15. 15.
    Brücke T, Danielczyk W, Simanyi M, Sofic E, Riederer P (1987) Terguride: partial dopamine agonists in the treatment of Parkinson’s disease. In: Yahr MD, Bergmann KJ (eds) Advances in neurology, vol 45. Raven, New York, pp 573–576Google Scholar
  16. 16.
    Carlsson A, Lindquist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127: 471PubMedGoogle Scholar
  17. 17.
    Carruba MO, Ricciardi S, Müller EE, Mantegazza P (1980) Anorectic effect of lisuride and other ergot derivatives in the rat. Eur J Pharmacol 64: 133–141PubMedGoogle Scholar
  18. 18.
    Clark D, Hjorth S, Carlsson A (1985) Dopamine-receptor agonists: mechanisms underlying autoreceptor selectivity. I. Review of the evidence. J Neural Transm 62: 1–52PubMedGoogle Scholar
  19. 19.
    Clark D, Hjorth S, Carlsson A (1985) Dopamine receptor agonists: mechanisms underlying autoreceptor selectivity. II. Theoretical considerations. J Neural Trans 62: 171–207Google Scholar
  20. 20.
    Cohen G (1983) The pathobiology of Parkinson’s disease. Biochemical aspects of dopamine neuron senescence. J Neural Transm (Suppl) 19: 89–103Google Scholar
  21. 21.
    Commissiong JW, Neff NH (1979) Current status of dopamine in the mammalian spinal cord. Biochem Pharmacol 28: 1569–1573PubMedGoogle Scholar
  22. 22.
    Cools AR (1984) Basal ganglia and Parkinson’s disease: neurobiological and pharmacological aspect in animals and man. Clin Neurol Neurosurg 86(3): 178–195PubMedGoogle Scholar
  23. 23.
    Corsini GU, Horowski R, Rainer E, Del Zompo M (1984) Treatment of Parkinson’s disease with a dopamine partial agonist. Clin Neuropharmacol 7(Suppl 1): 950–951Google Scholar
  24. 24.
    Crapper-McLachlan DR, BeBon U (1982) Models for the study of pathological neural aging. In: Terry RD, Bolis CL, Toffano G (eds) Neural aging and its implications in human neurological pathology. Raven, New York, pp 61–71 (Aging, vol 18)Google Scholar
  25. 25.
    Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Johnstone EC, Owen F, Owens DGC, Pulter M (1985) Chemical and structural changes in the brain in patients with movement disorders. In: Casey DE, Chase TN, Christensen AV, Gerlach J (eds) Dyskinesia, research and treatment. Springer, Berlin Heidelberg New York, pp 104–110Google Scholar
  26. 26.
    Crow TJ, Owen F, Cross AJ, Ferrier N, Johnstone EC, McCreadie RM, Owens DGC, Pulter M (1981) Neurotransmitter enzymes and receptors in post-mortem brain in schizophrenia: evidence that an increase in D2 dopamine receptors is associated with the type I syndrome. In: Riederer P, Usdin E (eds) Transmitter biochemistry of human brain tissue. Macmillan, London, pp 85–96Google Scholar
  27. 27.
    Danielczyk W (1978) Akute psychische Störungen während der L-Dopa-Therapie von Parkinson-Kranken. In: Fischer PA (ed) Langzeitbehandlung des Parkinson-Syndroms. Schattauer, Stuttgart, pp 211–218Google Scholar
  28. 28.
    Danielczyk W, Riederer P, Seemann D (1980) Benign and malignant types of Parkinson’s disease. Clinical and patho-physiological characterization. J Neural Transm (Suppl) 16: 199–210Google Scholar
  29. 29.
    Danielczyk W, Gajdosik L, Brücke T, Schnecker K, Riederer P (1984) Körpergewicht und subkutanes Fettgewebe bei fortgeschrittenem Parkinsonismus im Vergleich zu anderen chronischen zerebralen Erkrankungen. In: Fischer PA (ed) Vegetativstörungen beim Parkinson-Syndrom. Roche, Basel, pp 239–247Google Scholar
  30. 30.
    Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii 1403Google Scholar
  31. 31.
    Dexter DT, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1986) Lipid peroxidation as cause of nigral cell death in Parkinson’s disease. Lancet ii: 639Google Scholar
  32. 32.
    Dietl M (1985) Contribution á l’étude immunocytochimique en microscopie optique et électronique de la cholecystokinine et de la tyrosine hydroxylase dans la moelle épinière chez le rat et chez l’homme. Dissertation, Pierre et Marie Curie University, ParisGoogle Scholar
  33. 33.
    Dietl M, Arluison M, Mouchet P, Feuerstein C, Manier M, Thibault J (1985) Immunohistochemical demonstration of catecholaminergic cell bodies in the spinal cord of the rat. Histochemistry 82: 385–389PubMedGoogle Scholar
  34. 34.
    Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Ther Wochenschr 38: 1236–1239Google Scholar
  35. 35.
    Eriksson E, Carlsson M, Clark D, Nilsson C, Svensson K (1986) Compounds with selectivity for dopamine autoreceptors: effects on prolactin secretion in male and female rats. Clin Neuropharmacol 9(Suppl 4): 226–228PubMedGoogle Scholar
  36. 36.
    Farde L, Wiesel FA, Hall H, Halldin C, Stone-Elander S, Sedvall G (1987) No D2 receptor increase in PET study of schizophrenia. Arch Gen Psychiatry 44: 671PubMedGoogle Scholar
  37. 37.
    Fibinger HC, Lloyd KG (1984) Neurobiological substrates of tardive dyskinesia: the GABA hypothesis. Trends Neurosci Dec: 462Google Scholar
  38. 38.
    Flückiger E (1978) Effects of bromocriptine on the hypothalamopituitary axis. Acta Endocrinol [Suppl] (Copenh) 216: 111–117Google Scholar
  39. 39.
    Forno LS (1982) Pathology of Parkinson’s disease. In: Marsden CD, Fahn S (eds) Movement disorders. Butterworths, London, pp 23–30Google Scholar
  40. 40.
    Fuxe K, Fredholm BB, Ögren SO, Agnati LF, Hökfelt T, Gustafsson JA (1978) Pharmacological and biochemical evidence for the dopamine agonistic effect of bromocriptine. Acta Endocrinol [Suppl] (Copenh) 216: 27–56Google Scholar
  41. 41.
    Fuxe K, Agnati LF, Kalia M, Goldstein M, Andersson K, Härfstrand A (1985) Dopaminergic systems in the brain and pituitary. In: Flückiger E, Müller EE, Thorner MO (eds) The dopaminergic system. Springer, Berlin Heidelberg New York, pp 11–25Google Scholar
  42. 42.
    Gage FH, Dunnett SB, Stenevi U, Björklund A (1983) Aged rats: recovery of motor impairments by intrastriatal nigral grafts. Science 221: 966–969PubMedGoogle Scholar
  43. 43.
    Gaspar P, Gray F (1984) Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol 64: 43–52PubMedGoogle Scholar
  44. 44.
    Guttman M, Seeman P, Reynolds GP, Riederer P, Jellinger K, Tourtellotte WW (1986) Dopamine D2 receptor density remains constant in Parkinson’s disease: no explanation for late-onset diminished response to L-DOPA. Ann Neurol 19: 487–492PubMedGoogle Scholar
  45. 45.
    Haberland N, Hetey L (1987) Studies in postmortem dopamine uptake. II. Alterations of the synaptosomal catecholamine uptake in postmortem brain regions in schizophrenia. J Neural Transm 68: 303PubMedGoogle Scholar
  46. 46.
    Hardy J, Adolfsson R, Alafuzoff I, Bucht B, Marcusson J, Nyberg P, Perdahl E, Wester P, Windblad B (1985) Transmitter Deficits in Alzheimer’s disease. Neurochem Int 7(4): 545–563PubMedGoogle Scholar
  47. 47.
    Hökfelt T (1970) Electron microscopic studies on peripheral and central monoamine neurons. In: Bergmann W, Scharrer B (eds) Aspects of Neuroendocrinology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  48. 48.
    Hökfelt T (1974) Morphological contributions to monoamine pharmacology. Fed Proc 33: 2177PubMedGoogle Scholar
  49. 49.
    Horowski R (1986) Pharmacology of the dopamine agonist lisuride and its potential in the treatment of parkinsonism. In: Van Manen J, Rinne UK (eds) Lisuride: a new dopamine agonist and Parkinson’s disease. Excerpta Medica, Amsterdam, pp 24–37Google Scholar
  50. 50.
    Hunt SP (1983) Cytochemistry of the spinal cord. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, pp 53–84Google Scholar
  51. 51.
    Hyyppä MT, Langvik VA, Rinne UK (1978) Plasma pituitary hormones in patients with Parkinson’s disease treated with bromocriptine. J Neural Transm 42: 151–157PubMedGoogle Scholar
  52. 52.
    Ichimiya Y, Arai H, Kosaka K, Iizuka R (1986) Morphological and biochemical changes in the cholinergic and monoaminergic systems in Alzheimer-type dementia. Acta Neuropathol (Berl) 70: 112–116Google Scholar
  53. 53.
    Issidorides MR, Mytilineou C, Whetsell WO, Yahr MD (1978) Protein-rich cytoplasmic bodies of substantia nigra and locus coeruleus. Arch Neurol 35: 633–637PubMedGoogle Scholar
  54. 54.
    Jacob H (1983) Klinische Neuropathologie des Parkinsonismus. In: Gänshirt H (ed) Pathophysiologie, Klinik und Therapie des Parkinsonismus. Roche, Basel, pp 5–18Google Scholar
  55. 55.
    Javoy-Agid F, Taquet H, Cesselin F, Epelbaum J, Grouselle D, Mauborgne A, Studier JM, Agid Y (1984) Neuropeptides in Parkinson’s disease. In: Usdin E (ed) Catecholamines: neuropharmacology and central nervous system — Therapeutic aspects. Liss, New York, pp 35–42Google Scholar
  56. 56.
    Jellinger K (1986) The pathology of Parkinson’s disease. In: Fahn ST, Marsden CD (eds) The pathology of Parkinson’s disease. Butterworths, LondonGoogle Scholar
  57. 57.
    Jörgensen OS, Reynolds GP, Riederer P, Jellinger K (1982) Parkinson’s disease putamen: normal concentration of synaptic membrane marker antigens. J neural Transm 54: 171–179PubMedGoogle Scholar
  58. 58.
    Kato T, Nagatsu T, Iizuka R, Narabayashi H (1979) Cyclic AMP-dependent protein kinase activity in human brain: values in parkinsonism. Biochem Med 21: 141PubMedGoogle Scholar
  59. 59.
    Kaufman S (1977) Mixed function oxygenase-general considerations. In: Usdin E, Weiner N, Youdim MBH (eds) Structure and function of monoamine enzymes. Dekker, New York, pp 3–22Google Scholar
  60. 60.
    Kebabian JW, Beaulieu M, Itoh Y (1984) Pharmacological and biochemical evidence for the existence of two categories of dopamine receptors. Can J Neurol Sci 11: 114–117PubMedGoogle Scholar
  61. 61.
    Kehr W, Wachtel H, Schneider HH (1983) Dopaminergic and antidopaminergic properties of ergolines structurally related to lisuride. Acta Pharm Suec [Suppl] 2: 98–110Google Scholar
  62. 61a.
    Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20: 379–382PubMedGoogle Scholar
  63. 62.
    Konradi C, Swoma E, Jellinger K, Riederer P, Denney RM, Arluison M, Nagatsu T (1987) Immunocytochemical differentiation of MAO-A and MAO-B in human postmortem brain. Pharmacol Toxicol 60[Suppl 1]: 29Google Scholar
  64. 63.
    Koulousakis A, Nittner K (1984) Parkinson’sche Erkrankung und Sexualfunktion. In: Fischer PA (ed) Vegetativstörungen beim Parkinson-Syndrom. Roche, Basel, pp 189–208Google Scholar
  65. 64.
    Kornhuber J, Riederer P, Reynolds GP, Beckmann H, Jellinger K, Gabriel E (1989) 3H-spiperone binding sites in post-mortem brains from schizophrenic patients. Relationship to neuroleptic drug treatment, abnormal movements and positive symptoms prior to death. J Neural Transm 75: 1–10PubMedGoogle Scholar
  66. 65.
    Lindvall O, Björklund A, Skagerberg G (1983) Dopamine-con-taining neurons in the spinal cord: anatomy and some functional aspects. Ann Neurol 14: 255–260PubMedGoogle Scholar
  67. 66.
    Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson’s disease: effect of L-DOPA therapy. J Pharmacol Exp Ther 195: 453PubMedGoogle Scholar
  68. 67.
    Mackay AVP, Iversen LL, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Snyder SH (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39: 991PubMedGoogle Scholar
  69. 68.
    Madrazo I, Drucker-Colin R, Diaz V, Martinez-Mata J, Torres C, Becerril JJ (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med 316: 831–834PubMedGoogle Scholar
  70. 69.
    Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropathol 2: 1–7PubMedGoogle Scholar
  71. 70.
    Matthysse S (1973) Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Fed Proc 32: 200PubMedGoogle Scholar
  72. 71.
    McGeer PL, McGeer EG (1976) Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea. J Neurochem 26: 65–76PubMedGoogle Scholar
  73. 72.
    Mita T, Hanada S, Nishino N, Kuno T, Nakai H, Yamadori T, Mizoi Y, Tanaka C (1986) Decreased serotonin S2 and increased dopamine D2 receptors in chronic schizophrenics. Biol Psychiatry 21: 1407PubMedGoogle Scholar
  74. 73.
    Moore RY, Card JP (1984) Noradrenaline containing neuron systems. In Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam, pp 123–156Google Scholar
  75. 74.
    Mouchet P, Manier M, Dietl M, Feuerstein C, Berod A, Arluison M, Denoroy L, Thibault J (1986) Immunohistochemical study of catecholaminergic cell bodies in the rat spinal cord. Brain Res Bull 16: 341–353PubMedGoogle Scholar
  76. 75.
    Nagatsu T, Kato T, Numata Y, Ihuta K, Sano M, Nagatsu I, Kondo Y, Inagaki S, Iizuka R, Hori A, Narabayashi H (1977) Phenylethanolamine-N-methyltransferase and other enzymes of catecholamine metabolism in human brain. Clin Chim Acta 75: 221PubMedGoogle Scholar
  77. 76.
    Nagatsu T, Oka K, Yamamoto T, Matusui H, Kato T, Yamamoto C, Nagatsu I, Iizuka R, Narabayashi H (1981) Catecholaminergic enzymes in Parkinson’s disease and related extrapyramidal disease. In: Riederer P, Usdin E (eds) Transmitter biochemistry of human brain tissue. Macmillan, London, pp 291–302Google Scholar
  78. 77.
    Nakashima S, Ikuta F (1984) Catecholamine neurons with Alzheimer’s neurofibrillary changes and alteration of tyrosine hydroxylase: immunohistochemical investigation of tyrosine hydroxylase. Acta Neuropathol 64: 273–280Google Scholar
  79. 78.
    Nakashima S, Ikuta F (1984) Tyrosine hydroxylase proteins in Lewy bodies of parkinsonism and senile brain. J Neurol Sci 66: 91–96PubMedGoogle Scholar
  80. 79.
    Nakashima S, Kumanishi T, Ikuta F (1983) Immunohistochemistry on tyrosine hydroxylase in the substantia nigra of human autopsied cases. Brain Nerve 35: 1023–1029PubMedGoogle Scholar
  81. 80.
    Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brain stem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8: 3–32PubMedGoogle Scholar
  82. 81.
    Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathion deficiency? Neurosci Lett 33: 305–310PubMedGoogle Scholar
  83. 82.
    Post RM, Fink E, Carpenter WT, Goodwin FK (1975) Cerebrospinal fluid amine metabolites in acute schizophrenia. Arch Gen Psychiatry 32: 1063PubMedGoogle Scholar
  84. 83.
    Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Human brain tyrosine hydroxylase: in vitro effects of iron and phosphorylating agents in the CNS of controls, Parkinson’s disease and schizophrenia. J Neurochem 50(1): 202–208PubMedGoogle Scholar
  85. 84.
    Reynolds GP (1983) Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305: 527PubMedGoogle Scholar
  86. 85.
    Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. J Neural Transm 38: 277–301PubMedGoogle Scholar
  87. 86.
    Riederer P, Rausch WD, Birkmayer W, Jellinger K, Seemann D (1978) CNS modulation of adrenal tyrosine hydroxylase in Parkinson’s disease and metabolic encephalopathies. J Neural Transm (Suppl) 14: 121Google Scholar
  88. 87.
    Riederer P, Jellinger K (1983) Neurochemical insights into monoamine oxidase inhibitors, with special reference to deprenyl (selegiline). Acta Neurol Scand [Suppl] 95: 43–55Google Scholar
  89. 88.
    Riederer P, Sofic E, Rausch WD, Kruzik P, Youdim MBH (1985) Dopaminforschung heute und morgen — L-DOPA in der Zukunft. In: Riederer P, Umek H (eds) L-Dopa-Substitution der Parkinson-Krankheit. Springer, Vienna New York, pp 127–144Google Scholar
  90. 89.
    Riederer P, Sofic E, Konradi C (1986) Neurobiochemische Aspekte zur Progression der Parkinson-Krankheit: postmortem Befunde und MPTP-Modell. In: Fischer PA (ed) Spätsyndrome der Parkinson-Krankheit. Roche, Basel, pp 37–56Google Scholar
  91. 90.
    Riederer P, Danielczyk W, Suchy I, Brücke T (1986) Terguride. Drugs Future 11: 305–315Google Scholar
  92. 91.
    Ringborg U (1966) Composition of RNA in neurons of rat hippocampus at different ages. Brain Res 2: 296–298PubMedGoogle Scholar
  93. 92.
    Ringwald E, Hirt D, Markstein R, Vigouret JM (1982) Dopamin-Rezeptoren-Stimulation in der Behandlung der Parkinson-Krankheit. Nervenarzt 53: 67–71PubMedGoogle Scholar
  94. 93.
    Rinne UK (1982) Brain neurotransmitter receptors in Parkinson’s disease. In: Marsden CD, Fahn S (eds) Movement disorders. Butterworths, London, pp 59–74Google Scholar
  95. 94.
    Rosengren E, Linder-Eliasson E, Carlsson A (1985) Detection of 5-S-cysteinyldopamine in human brain. J Neural Transm 63: 247–253PubMedGoogle Scholar
  96. 95.
    Roy A, Pickar D, Linnoila M, Doran AR, Ninan P, Paul SM (1985) Cerebrospinal fluid monoamine and monoamine metabolite concentrations in melancholia. Psychiatry Res 15: 281–292PubMedGoogle Scholar
  97. 96.
    Ruffolo RR (1982) Important concepts of receptor theory. J Auton Pharmac 2: 277–295Google Scholar
  98. 97.
    Sangevi I, Singer G, Friedman E, Gershon S (1975) Anorexigenic effects of d-amphetamine and L-DOPA in the rat. Pharmacol Biochem Behav 3: 81Google Scholar
  99. 98.
    Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K (1959) Distribution of catechol compounds in human brain. Biochim Biophys Acta 32: 586–587PubMedGoogle Scholar
  100. 99.
    Scatton B, Dubois A, Cudennec A (1984) Autoradiographic localization of dopamine receptors in the spinal cord of the rat using [3H]-N-propylnorapomorphine. J Neural Transm 59: 251–256PubMedGoogle Scholar
  101. 100.
    Scatton B, Dennis T, L’Heureux R, Monfort JC, Duychaerts C, Javoy-Agid F (1986) Degeneration of noradrenergic and serotonergic but not dopaminergic neurones in the lumbar spinal cord of parkinsonian patients. Brain res 380: 181–185PubMedGoogle Scholar
  102. 101.
    Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122: 509–522PubMedGoogle Scholar
  103. 102.
    Sedvall G, Farde L, Persson A, Wiesel FA (1986) Imaging of neurotransmitter receptors in the living human brain. Arch Gen Psychiatry 43: 995PubMedGoogle Scholar
  104. 103.
    Seeman P, Bzowej NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jellinger K, Watanabe S, Tourtellotte WW (1987) Human brain D1 and D2 dopamine receptors in childhood, aging, schizophrenia, Alzheimer’s, Parkinson’s and Huntington’s disease. Neuropsychopharmacology 1(1): 5–15PubMedGoogle Scholar
  105. 104.
    Shibuya M (1979) Dopamine sensitive adenylate cyclase activity in the striatum of Parkinson’s disease. J Neural Transm 44: 287PubMedGoogle Scholar
  106. 105.
    Sofic E (1986) Untersuchung von biogenen Aminen, Metaboliten, Ascorbinsäure und Glutathion mittels HPLC-ECD und deren Verhalten in ausgewählten Lebensmitteln und im Organismus von Tier und Mensch. Dissertation, Technical University, ViennaGoogle Scholar
  107. 106.
    Sofic E, Moll G, Riederer P, Jellinger K, Gabriel E (1988) Monoaminerge Läsion bei seniler Demenz vom Alzheimer Typ (SDAT): Vorläufige Befunde. In: Beckmann H, Laux G (eds) Biologische Psychiatrie, Synopsis 1986/87, Springer Verlag, Heidelberg New York London Paris Tokyo, pp 151–157Google Scholar
  108. 107.
    Starke K, Langer SZ (1979) A note on terminology for presynaptic receptors. In: Langer SZ, Starke K, Dubocvich ML (eds) Presynaptic receptors. Pergamon, Oxford, pp 1–3Google Scholar
  109. 108.
    Stoof C, Kebabian W (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 35: 2281–2296PubMedGoogle Scholar
  110. 109.
    Tamminga CA, Smith RC, Pandey G, Frohman DA, Davis JM (1977) A neuroendocrine study of supersensitivity in tardive dyskinesia. Arch Gen Psychiatry 34: 1199PubMedGoogle Scholar
  111. 110.
    Tennyson VM, Heikkila R, Mytilineou C, Cote L, Cohen G (1974) 5-Hydroxydopamine “tagged” neuronal boutons in rabbit neostriatum; interrelationship between vesicles and axonal membrane. Brain Res 82: 341PubMedGoogle Scholar
  112. 111.
    Uemura E, Hartmann HA (1979) Quantitative studies of neuronal RNA on the subiculum of demented old individuals. Brain Res Bull 44: 301–305Google Scholar
  113. 112.
    Ulm G, Suchy I (1986) Drug treatment of Parkinson’s disease with special reference to lisuride. In: Van Manen J, Rinne UK (eds) Lisuride: a new dopamine agonist and Parkinson’s disease. Excerpta Medica Amsterdam, pp 55–63Google Scholar
  114. 113.
    Van Rossum JM (1966) The significance of dopamine-receptor blockade for the action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160: 492PubMedGoogle Scholar
  115. 114.
    Wong DF, Wagner HN, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Williams JA, O’Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234: 1558PubMedGoogle Scholar
  116. 115.
    Yahr MD, Bergmann KJ (1987) Advances in neurology, vol 45. Raven, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. Riederer
    • 1
  • E. Sofic
    • 1
  • C. Konradi
    • 1
  • J. Kornhuber
    • 1
  • H. Beckmann
    • 1
  • M. Dietl
    • 2
  • G. Moll
    • 1
  • G. Hebenstreit
    • 3
  1. 1.Clinical Neurochemistry, Department of PsychiatryUniversity of WürzburgFederal Republic of Germany
  2. 2.College de France, Groupe NBParisFrance
  3. 3.Landesnervenklinik MauerAmstettenAustria

Personalised recommendations