Skip to main content

The Role of Dopamine in the Control of Neurobiological Functions

  • Conference paper
The Role of Brain Dopamine

Part of the book series: Basic and Clinical Aspects of Neuroscience ((BASIC,volume 3))

Abstract

It is only 30 years since dopamine (DA) was first measured in human brain tissue by Sano [98] (Fig.1). One year later Ehringer and Hornykiewicz [34] demonstrated a striatal DA deficiency in Parkinson’s disease, and 1 year after that it was shown that the symptoms of the disease could be reversed by L-DOPA, the precursor amino acid of DA [5, 7]. Both the experimental and the clinical findings confirmed earlier studies by Carlsson and his coworkers [16] which had led them to conclude that a deficiency of DA might be an essential factor underlying extrapyramidal disorders in general, and Parkinson’s disease in particular. Since that time a wealth of biochemical and pharmacological evidence has favoured the assumption that the nigrostriatal DA system shows a plasticity of adaptational processes unique among the various neurotransmitter systems [41]. Parkinson’s disease is an excellent model for the demonstration of this complex regulating activity of DA neurons arising mainly in the substantia nigra pars compacta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambani LM, van Woert MH, Murphy S (1975) Brain peroxidase and catalase in Parkinson’s disease. Arch Neurol 32: 114–118

    PubMed  CAS  Google Scholar 

  2. Arai H, Kosaka K, Iizuka R (1984) Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J Neurochem 43: 388–393

    PubMed  CAS  Google Scholar 

  3. Backlund EO, Grandberg PO, Hamberger B (1985) Transplantation of adrenal medulla tissue to striatum in parkinsonism: first clinical trials. J Neurosurg 62: 169–173

    PubMed  CAS  Google Scholar 

  4. Barbeau A, Murphy CF, Sourkes TL (1961) Excretion of dopamine in diseases of basal ganglia. Science 133: 1706

    PubMed  CAS  Google Scholar 

  5. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20: 415–455

    PubMed  CAS  Google Scholar 

  6. Bhatnagar RK, Arneric SP, Cannon JG, Flynn J, Long JP (1982) Structur activity relationships of presynaptic dopamine receptor agonists. Pharmacol Biochem Behav 17(Supp 1): 11–19

    PubMed  CAS  Google Scholar 

  7. Birkmayer W, Hornykiewicz O (1961) Der L-Dioxyphenylalanin ( = DOPA-)Effekt bei der Parkinson-Akinese. Wien Klin Wochenschr 73: 787–788

    PubMed  CAS  Google Scholar 

  8. Birkmayer W, Hornykiewicz O (1976) Advances in Parkinsonism. Roche, Basel

    Google Scholar 

  9. Birkmayer W, Knoll J, Riederer P, Youdim MBH (1983) (—)Deprenyl leads to prolongation of L-DOPA efficacy in Parkinson’s disease. Mod Probl Pharmacopsychiatry 19: 170–176

    PubMed  CAS  Google Scholar 

  10. Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson’s disease: a long term study. J Neural Transm 64: 113–127

    PubMed  CAS  Google Scholar 

  11. Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam, pp 55–122

    Google Scholar 

  12. Björklund A, Dunnet SB, Stenevi U, Lewis ME, Iversen SD (1980) Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 199: 307–333

    PubMed  Google Scholar 

  13. Bowen DM, Smith CB, White P, Davison A (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99: 459–496

    PubMed  CAS  Google Scholar 

  14. Bowers MB (1974) Central dopamine turnover in schizophrenic syndromes. Arch Gen Psychiatry 31: 50

    PubMed  Google Scholar 

  15. Brücke T, Danielczyk W, Simanyi M, Sofic E, Riederer P (1987) Terguride: partial dopamine agonists in the treatment of Parkinson’s disease. In: Yahr MD, Bergmann KJ (eds) Advances in neurology, vol 45. Raven, New York, pp 573–576

    Google Scholar 

  16. Carlsson A, Lindquist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127: 471

    PubMed  CAS  Google Scholar 

  17. Carruba MO, Ricciardi S, Müller EE, Mantegazza P (1980) Anorectic effect of lisuride and other ergot derivatives in the rat. Eur J Pharmacol 64: 133–141

    PubMed  CAS  Google Scholar 

  18. Clark D, Hjorth S, Carlsson A (1985) Dopamine-receptor agonists: mechanisms underlying autoreceptor selectivity. I. Review of the evidence. J Neural Transm 62: 1–52

    PubMed  CAS  Google Scholar 

  19. Clark D, Hjorth S, Carlsson A (1985) Dopamine receptor agonists: mechanisms underlying autoreceptor selectivity. II. Theoretical considerations. J Neural Trans 62: 171–207

    CAS  Google Scholar 

  20. Cohen G (1983) The pathobiology of Parkinson’s disease. Biochemical aspects of dopamine neuron senescence. J Neural Transm (Suppl) 19: 89–103

    CAS  Google Scholar 

  21. Commissiong JW, Neff NH (1979) Current status of dopamine in the mammalian spinal cord. Biochem Pharmacol 28: 1569–1573

    PubMed  CAS  Google Scholar 

  22. Cools AR (1984) Basal ganglia and Parkinson’s disease: neurobiological and pharmacological aspect in animals and man. Clin Neurol Neurosurg 86(3): 178–195

    PubMed  CAS  Google Scholar 

  23. Corsini GU, Horowski R, Rainer E, Del Zompo M (1984) Treatment of Parkinson’s disease with a dopamine partial agonist. Clin Neuropharmacol 7(Suppl 1): 950–951

    Google Scholar 

  24. Crapper-McLachlan DR, BeBon U (1982) Models for the study of pathological neural aging. In: Terry RD, Bolis CL, Toffano G (eds) Neural aging and its implications in human neurological pathology. Raven, New York, pp 61–71 (Aging, vol 18)

    Google Scholar 

  25. Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Johnstone EC, Owen F, Owens DGC, Pulter M (1985) Chemical and structural changes in the brain in patients with movement disorders. In: Casey DE, Chase TN, Christensen AV, Gerlach J (eds) Dyskinesia, research and treatment. Springer, Berlin Heidelberg New York, pp 104–110

    Google Scholar 

  26. Crow TJ, Owen F, Cross AJ, Ferrier N, Johnstone EC, McCreadie RM, Owens DGC, Pulter M (1981) Neurotransmitter enzymes and receptors in post-mortem brain in schizophrenia: evidence that an increase in D2 dopamine receptors is associated with the type I syndrome. In: Riederer P, Usdin E (eds) Transmitter biochemistry of human brain tissue. Macmillan, London, pp 85–96

    Google Scholar 

  27. Danielczyk W (1978) Akute psychische Störungen während der L-Dopa-Therapie von Parkinson-Kranken. In: Fischer PA (ed) Langzeitbehandlung des Parkinson-Syndroms. Schattauer, Stuttgart, pp 211–218

    Google Scholar 

  28. Danielczyk W, Riederer P, Seemann D (1980) Benign and malignant types of Parkinson’s disease. Clinical and patho-physiological characterization. J Neural Transm (Suppl) 16: 199–210

    Google Scholar 

  29. Danielczyk W, Gajdosik L, Brücke T, Schnecker K, Riederer P (1984) Körpergewicht und subkutanes Fettgewebe bei fortgeschrittenem Parkinsonismus im Vergleich zu anderen chronischen zerebralen Erkrankungen. In: Fischer PA (ed) Vegetativstörungen beim Parkinson-Syndrom. Roche, Basel, pp 239–247

    Google Scholar 

  30. Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii 1403

    Google Scholar 

  31. Dexter DT, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1986) Lipid peroxidation as cause of nigral cell death in Parkinson’s disease. Lancet ii: 639

    Google Scholar 

  32. Dietl M (1985) Contribution á l’étude immunocytochimique en microscopie optique et électronique de la cholecystokinine et de la tyrosine hydroxylase dans la moelle épinière chez le rat et chez l’homme. Dissertation, Pierre et Marie Curie University, Paris

    Google Scholar 

  33. Dietl M, Arluison M, Mouchet P, Feuerstein C, Manier M, Thibault J (1985) Immunohistochemical demonstration of catecholaminergic cell bodies in the spinal cord of the rat. Histochemistry 82: 385–389

    PubMed  CAS  Google Scholar 

  34. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Ther Wochenschr 38: 1236–1239

    CAS  Google Scholar 

  35. Eriksson E, Carlsson M, Clark D, Nilsson C, Svensson K (1986) Compounds with selectivity for dopamine autoreceptors: effects on prolactin secretion in male and female rats. Clin Neuropharmacol 9(Suppl 4): 226–228

    PubMed  Google Scholar 

  36. Farde L, Wiesel FA, Hall H, Halldin C, Stone-Elander S, Sedvall G (1987) No D2 receptor increase in PET study of schizophrenia. Arch Gen Psychiatry 44: 671

    PubMed  CAS  Google Scholar 

  37. Fibinger HC, Lloyd KG (1984) Neurobiological substrates of tardive dyskinesia: the GABA hypothesis. Trends Neurosci Dec: 462

    Google Scholar 

  38. Flückiger E (1978) Effects of bromocriptine on the hypothalamopituitary axis. Acta Endocrinol [Suppl] (Copenh) 216: 111–117

    Google Scholar 

  39. Forno LS (1982) Pathology of Parkinson’s disease. In: Marsden CD, Fahn S (eds) Movement disorders. Butterworths, London, pp 23–30

    Google Scholar 

  40. Fuxe K, Fredholm BB, Ögren SO, Agnati LF, Hökfelt T, Gustafsson JA (1978) Pharmacological and biochemical evidence for the dopamine agonistic effect of bromocriptine. Acta Endocrinol [Suppl] (Copenh) 216: 27–56

    CAS  Google Scholar 

  41. Fuxe K, Agnati LF, Kalia M, Goldstein M, Andersson K, Härfstrand A (1985) Dopaminergic systems in the brain and pituitary. In: Flückiger E, Müller EE, Thorner MO (eds) The dopaminergic system. Springer, Berlin Heidelberg New York, pp 11–25

    Google Scholar 

  42. Gage FH, Dunnett SB, Stenevi U, Björklund A (1983) Aged rats: recovery of motor impairments by intrastriatal nigral grafts. Science 221: 966–969

    PubMed  CAS  Google Scholar 

  43. Gaspar P, Gray F (1984) Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol 64: 43–52

    PubMed  CAS  Google Scholar 

  44. Guttman M, Seeman P, Reynolds GP, Riederer P, Jellinger K, Tourtellotte WW (1986) Dopamine D2 receptor density remains constant in Parkinson’s disease: no explanation for late-onset diminished response to L-DOPA. Ann Neurol 19: 487–492

    PubMed  CAS  Google Scholar 

  45. Haberland N, Hetey L (1987) Studies in postmortem dopamine uptake. II. Alterations of the synaptosomal catecholamine uptake in postmortem brain regions in schizophrenia. J Neural Transm 68: 303

    PubMed  CAS  Google Scholar 

  46. Hardy J, Adolfsson R, Alafuzoff I, Bucht B, Marcusson J, Nyberg P, Perdahl E, Wester P, Windblad B (1985) Transmitter Deficits in Alzheimer’s disease. Neurochem Int 7(4): 545–563

    PubMed  CAS  Google Scholar 

  47. Hökfelt T (1970) Electron microscopic studies on peripheral and central monoamine neurons. In: Bergmann W, Scharrer B (eds) Aspects of Neuroendocrinology. Springer, Berlin Heidelberg New York

    Google Scholar 

  48. Hökfelt T (1974) Morphological contributions to monoamine pharmacology. Fed Proc 33: 2177

    PubMed  Google Scholar 

  49. Horowski R (1986) Pharmacology of the dopamine agonist lisuride and its potential in the treatment of parkinsonism. In: Van Manen J, Rinne UK (eds) Lisuride: a new dopamine agonist and Parkinson’s disease. Excerpta Medica, Amsterdam, pp 24–37

    Google Scholar 

  50. Hunt SP (1983) Cytochemistry of the spinal cord. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, pp 53–84

    Google Scholar 

  51. Hyyppä MT, Langvik VA, Rinne UK (1978) Plasma pituitary hormones in patients with Parkinson’s disease treated with bromocriptine. J Neural Transm 42: 151–157

    PubMed  Google Scholar 

  52. Ichimiya Y, Arai H, Kosaka K, Iizuka R (1986) Morphological and biochemical changes in the cholinergic and monoaminergic systems in Alzheimer-type dementia. Acta Neuropathol (Berl) 70: 112–116

    CAS  Google Scholar 

  53. Issidorides MR, Mytilineou C, Whetsell WO, Yahr MD (1978) Protein-rich cytoplasmic bodies of substantia nigra and locus coeruleus. Arch Neurol 35: 633–637

    PubMed  CAS  Google Scholar 

  54. Jacob H (1983) Klinische Neuropathologie des Parkinsonismus. In: Gänshirt H (ed) Pathophysiologie, Klinik und Therapie des Parkinsonismus. Roche, Basel, pp 5–18

    Google Scholar 

  55. Javoy-Agid F, Taquet H, Cesselin F, Epelbaum J, Grouselle D, Mauborgne A, Studier JM, Agid Y (1984) Neuropeptides in Parkinson’s disease. In: Usdin E (ed) Catecholamines: neuropharmacology and central nervous system — Therapeutic aspects. Liss, New York, pp 35–42

    Google Scholar 

  56. Jellinger K (1986) The pathology of Parkinson’s disease. In: Fahn ST, Marsden CD (eds) The pathology of Parkinson’s disease. Butterworths, London

    Google Scholar 

  57. Jörgensen OS, Reynolds GP, Riederer P, Jellinger K (1982) Parkinson’s disease putamen: normal concentration of synaptic membrane marker antigens. J neural Transm 54: 171–179

    PubMed  Google Scholar 

  58. Kato T, Nagatsu T, Iizuka R, Narabayashi H (1979) Cyclic AMP-dependent protein kinase activity in human brain: values in parkinsonism. Biochem Med 21: 141

    PubMed  CAS  Google Scholar 

  59. Kaufman S (1977) Mixed function oxygenase-general considerations. In: Usdin E, Weiner N, Youdim MBH (eds) Structure and function of monoamine enzymes. Dekker, New York, pp 3–22

    Google Scholar 

  60. Kebabian JW, Beaulieu M, Itoh Y (1984) Pharmacological and biochemical evidence for the existence of two categories of dopamine receptors. Can J Neurol Sci 11: 114–117

    PubMed  CAS  Google Scholar 

  61. Kehr W, Wachtel H, Schneider HH (1983) Dopaminergic and antidopaminergic properties of ergolines structurally related to lisuride. Acta Pharm Suec [Suppl] 2: 98–110

    Google Scholar 

  62. Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20: 379–382

    PubMed  CAS  Google Scholar 

  63. Konradi C, Swoma E, Jellinger K, Riederer P, Denney RM, Arluison M, Nagatsu T (1987) Immunocytochemical differentiation of MAO-A and MAO-B in human postmortem brain. Pharmacol Toxicol 60[Suppl 1]: 29

    Google Scholar 

  64. Koulousakis A, Nittner K (1984) Parkinson’sche Erkrankung und Sexualfunktion. In: Fischer PA (ed) Vegetativstörungen beim Parkinson-Syndrom. Roche, Basel, pp 189–208

    Google Scholar 

  65. Kornhuber J, Riederer P, Reynolds GP, Beckmann H, Jellinger K, Gabriel E (1989) 3H-spiperone binding sites in post-mortem brains from schizophrenic patients. Relationship to neuroleptic drug treatment, abnormal movements and positive symptoms prior to death. J Neural Transm 75: 1–10

    PubMed  CAS  Google Scholar 

  66. Lindvall O, Björklund A, Skagerberg G (1983) Dopamine-con-taining neurons in the spinal cord: anatomy and some functional aspects. Ann Neurol 14: 255–260

    PubMed  CAS  Google Scholar 

  67. Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson’s disease: effect of L-DOPA therapy. J Pharmacol Exp Ther 195: 453

    PubMed  CAS  Google Scholar 

  68. Mackay AVP, Iversen LL, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Snyder SH (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39: 991

    PubMed  CAS  Google Scholar 

  69. Madrazo I, Drucker-Colin R, Diaz V, Martinez-Mata J, Torres C, Becerril JJ (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med 316: 831–834

    PubMed  CAS  Google Scholar 

  70. Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropathol 2: 1–7

    PubMed  CAS  Google Scholar 

  71. Matthysse S (1973) Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Fed Proc 32: 200

    PubMed  CAS  Google Scholar 

  72. McGeer PL, McGeer EG (1976) Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea. J Neurochem 26: 65–76

    PubMed  CAS  Google Scholar 

  73. Mita T, Hanada S, Nishino N, Kuno T, Nakai H, Yamadori T, Mizoi Y, Tanaka C (1986) Decreased serotonin S2 and increased dopamine D2 receptors in chronic schizophrenics. Biol Psychiatry 21: 1407

    PubMed  CAS  Google Scholar 

  74. Moore RY, Card JP (1984) Noradrenaline containing neuron systems. In Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam, pp 123–156

    Google Scholar 

  75. Mouchet P, Manier M, Dietl M, Feuerstein C, Berod A, Arluison M, Denoroy L, Thibault J (1986) Immunohistochemical study of catecholaminergic cell bodies in the rat spinal cord. Brain Res Bull 16: 341–353

    PubMed  CAS  Google Scholar 

  76. Nagatsu T, Kato T, Numata Y, Ihuta K, Sano M, Nagatsu I, Kondo Y, Inagaki S, Iizuka R, Hori A, Narabayashi H (1977) Phenylethanolamine-N-methyltransferase and other enzymes of catecholamine metabolism in human brain. Clin Chim Acta 75: 221

    PubMed  CAS  Google Scholar 

  77. Nagatsu T, Oka K, Yamamoto T, Matusui H, Kato T, Yamamoto C, Nagatsu I, Iizuka R, Narabayashi H (1981) Catecholaminergic enzymes in Parkinson’s disease and related extrapyramidal disease. In: Riederer P, Usdin E (eds) Transmitter biochemistry of human brain tissue. Macmillan, London, pp 291–302

    Google Scholar 

  78. Nakashima S, Ikuta F (1984) Catecholamine neurons with Alzheimer’s neurofibrillary changes and alteration of tyrosine hydroxylase: immunohistochemical investigation of tyrosine hydroxylase. Acta Neuropathol 64: 273–280

    Google Scholar 

  79. Nakashima S, Ikuta F (1984) Tyrosine hydroxylase proteins in Lewy bodies of parkinsonism and senile brain. J Neurol Sci 66: 91–96

    PubMed  CAS  Google Scholar 

  80. Nakashima S, Kumanishi T, Ikuta F (1983) Immunohistochemistry on tyrosine hydroxylase in the substantia nigra of human autopsied cases. Brain Nerve 35: 1023–1029

    PubMed  CAS  Google Scholar 

  81. Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brain stem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8: 3–32

    PubMed  CAS  Google Scholar 

  82. Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathion deficiency? Neurosci Lett 33: 305–310

    PubMed  CAS  Google Scholar 

  83. Post RM, Fink E, Carpenter WT, Goodwin FK (1975) Cerebrospinal fluid amine metabolites in acute schizophrenia. Arch Gen Psychiatry 32: 1063

    PubMed  CAS  Google Scholar 

  84. Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Human brain tyrosine hydroxylase: in vitro effects of iron and phosphorylating agents in the CNS of controls, Parkinson’s disease and schizophrenia. J Neurochem 50(1): 202–208

    PubMed  CAS  Google Scholar 

  85. Reynolds GP (1983) Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305: 527

    PubMed  CAS  Google Scholar 

  86. Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. J Neural Transm 38: 277–301

    PubMed  CAS  Google Scholar 

  87. Riederer P, Rausch WD, Birkmayer W, Jellinger K, Seemann D (1978) CNS modulation of adrenal tyrosine hydroxylase in Parkinson’s disease and metabolic encephalopathies. J Neural Transm (Suppl) 14: 121

    CAS  Google Scholar 

  88. Riederer P, Jellinger K (1983) Neurochemical insights into monoamine oxidase inhibitors, with special reference to deprenyl (selegiline). Acta Neurol Scand [Suppl] 95: 43–55

    CAS  Google Scholar 

  89. Riederer P, Sofic E, Rausch WD, Kruzik P, Youdim MBH (1985) Dopaminforschung heute und morgen — L-DOPA in der Zukunft. In: Riederer P, Umek H (eds) L-Dopa-Substitution der Parkinson-Krankheit. Springer, Vienna New York, pp 127–144

    Google Scholar 

  90. Riederer P, Sofic E, Konradi C (1986) Neurobiochemische Aspekte zur Progression der Parkinson-Krankheit: postmortem Befunde und MPTP-Modell. In: Fischer PA (ed) Spätsyndrome der Parkinson-Krankheit. Roche, Basel, pp 37–56

    Google Scholar 

  91. Riederer P, Danielczyk W, Suchy I, Brücke T (1986) Terguride. Drugs Future 11: 305–315

    Google Scholar 

  92. Ringborg U (1966) Composition of RNA in neurons of rat hippocampus at different ages. Brain Res 2: 296–298

    PubMed  CAS  Google Scholar 

  93. Ringwald E, Hirt D, Markstein R, Vigouret JM (1982) Dopamin-Rezeptoren-Stimulation in der Behandlung der Parkinson-Krankheit. Nervenarzt 53: 67–71

    PubMed  CAS  Google Scholar 

  94. Rinne UK (1982) Brain neurotransmitter receptors in Parkinson’s disease. In: Marsden CD, Fahn S (eds) Movement disorders. Butterworths, London, pp 59–74

    Google Scholar 

  95. Rosengren E, Linder-Eliasson E, Carlsson A (1985) Detection of 5-S-cysteinyldopamine in human brain. J Neural Transm 63: 247–253

    PubMed  CAS  Google Scholar 

  96. Roy A, Pickar D, Linnoila M, Doran AR, Ninan P, Paul SM (1985) Cerebrospinal fluid monoamine and monoamine metabolite concentrations in melancholia. Psychiatry Res 15: 281–292

    PubMed  CAS  Google Scholar 

  97. Ruffolo RR (1982) Important concepts of receptor theory. J Auton Pharmac 2: 277–295

    CAS  Google Scholar 

  98. Sangevi I, Singer G, Friedman E, Gershon S (1975) Anorexigenic effects of d-amphetamine and L-DOPA in the rat. Pharmacol Biochem Behav 3: 81

    Google Scholar 

  99. Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K (1959) Distribution of catechol compounds in human brain. Biochim Biophys Acta 32: 586–587

    PubMed  CAS  Google Scholar 

  100. Scatton B, Dubois A, Cudennec A (1984) Autoradiographic localization of dopamine receptors in the spinal cord of the rat using [3H]-N-propylnorapomorphine. J Neural Transm 59: 251–256

    PubMed  CAS  Google Scholar 

  101. Scatton B, Dennis T, L’Heureux R, Monfort JC, Duychaerts C, Javoy-Agid F (1986) Degeneration of noradrenergic and serotonergic but not dopaminergic neurones in the lumbar spinal cord of parkinsonian patients. Brain res 380: 181–185

    PubMed  CAS  Google Scholar 

  102. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122: 509–522

    PubMed  CAS  Google Scholar 

  103. Sedvall G, Farde L, Persson A, Wiesel FA (1986) Imaging of neurotransmitter receptors in the living human brain. Arch Gen Psychiatry 43: 995

    PubMed  CAS  Google Scholar 

  104. Seeman P, Bzowej NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jellinger K, Watanabe S, Tourtellotte WW (1987) Human brain D1 and D2 dopamine receptors in childhood, aging, schizophrenia, Alzheimer’s, Parkinson’s and Huntington’s disease. Neuropsychopharmacology 1(1): 5–15

    PubMed  CAS  Google Scholar 

  105. Shibuya M (1979) Dopamine sensitive adenylate cyclase activity in the striatum of Parkinson’s disease. J Neural Transm 44: 287

    PubMed  CAS  Google Scholar 

  106. Sofic E (1986) Untersuchung von biogenen Aminen, Metaboliten, Ascorbinsäure und Glutathion mittels HPLC-ECD und deren Verhalten in ausgewählten Lebensmitteln und im Organismus von Tier und Mensch. Dissertation, Technical University, Vienna

    Google Scholar 

  107. Sofic E, Moll G, Riederer P, Jellinger K, Gabriel E (1988) Monoaminerge Läsion bei seniler Demenz vom Alzheimer Typ (SDAT): Vorläufige Befunde. In: Beckmann H, Laux G (eds) Biologische Psychiatrie, Synopsis 1986/87, Springer Verlag, Heidelberg New York London Paris Tokyo, pp 151–157

    Google Scholar 

  108. Starke K, Langer SZ (1979) A note on terminology for presynaptic receptors. In: Langer SZ, Starke K, Dubocvich ML (eds) Presynaptic receptors. Pergamon, Oxford, pp 1–3

    Google Scholar 

  109. Stoof C, Kebabian W (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 35: 2281–2296

    PubMed  CAS  Google Scholar 

  110. Tamminga CA, Smith RC, Pandey G, Frohman DA, Davis JM (1977) A neuroendocrine study of supersensitivity in tardive dyskinesia. Arch Gen Psychiatry 34: 1199

    PubMed  CAS  Google Scholar 

  111. Tennyson VM, Heikkila R, Mytilineou C, Cote L, Cohen G (1974) 5-Hydroxydopamine “tagged” neuronal boutons in rabbit neostriatum; interrelationship between vesicles and axonal membrane. Brain Res 82: 341

    PubMed  CAS  Google Scholar 

  112. Uemura E, Hartmann HA (1979) Quantitative studies of neuronal RNA on the subiculum of demented old individuals. Brain Res Bull 44: 301–305

    Google Scholar 

  113. Ulm G, Suchy I (1986) Drug treatment of Parkinson’s disease with special reference to lisuride. In: Van Manen J, Rinne UK (eds) Lisuride: a new dopamine agonist and Parkinson’s disease. Excerpta Medica Amsterdam, pp 55–63

    Google Scholar 

  114. Van Rossum JM (1966) The significance of dopamine-receptor blockade for the action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160: 492

    PubMed  Google Scholar 

  115. Wong DF, Wagner HN, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Williams JA, O’Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234: 1558

    PubMed  CAS  Google Scholar 

  116. Yahr MD, Bergmann KJ (1987) Advances in neurology, vol 45. Raven, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riederer, P. et al. (1989). The Role of Dopamine in the Control of Neurobiological Functions. In: The Role of Brain Dopamine. Basic and Clinical Aspects of Neuroscience, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73897-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73897-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50040-7

  • Online ISBN: 978-3-642-73897-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics