Chemical Waves and Periodic Precipitation Processes

Part of the Springer Series in Synergetics book series (SSSYN, volume 41)


A nonlinear chemical reaction with sufficiently complex reaction mechanism, maintained far from equilibrium, may show the phenomenon of chemical waves or fronts which are traveling concentration gradients 1,2,3,4 Chemical waves may occur in a variety of systems, including oscillatory reactions or reactions in a stable stationary state with so-called excitatory properties in which, upon a perturbation of appropriate direction and magnitude, the system responds with a large variation of concentrations prior to return to the stationary state. The subject of chemical waves includes single fronts, pulses and wave trains. Three types of waves have been discussed in some detail. in kinematic waves5 an apparent wave travels through the system due to an initial gradient in period or phase; hence these waves in the literature are also sometimes called phase waves. Kinematic waves involve only reaction but not diffusion. Relaxation oscillation waves6,7,8 occur in both oscillatory and excititory systems with multiple time scales, systems in which variations of concentrations occur on both a long and short time scale. Hence in relaxation-oscillation systems there occur sharp variations in concentration and there exist steep gradients. Phase waves9 occur in systems with shallow gradients and are distinguished from relaxation-oscillation waves (also called trigger waves) by the shape of the wave. the steepness of the gradient. the velocity and the range of constant velocity10. in both trigger waves and phase waves, diffusion and reaction both play an important role.


Phase Wave Oscillatory Reaction Chemical Wave Liesegang Ring Stable Stationary State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Eyring, D. Henderson: In Periodicities in Chemistry and Biology. Theoretical Chemistry, Vol. 4 (Academic Press, New York 1978).Google Scholar
  2. 2.
    P. Hanusse, P. Ortoieva, J. Ross: J. Adv. Chem. Phys. 38. 317 (1978).CrossRefGoogle Scholar
  3. 3.
    R. Field, M. Burger: In Oscillations and Traveling Waves in Chemical Systems (Wiley. New York 1985).Google Scholar
  4. 4.
    C. Vidal, P. Hanusse: Int. Rev. Phys. Chem. 5, 1 (1986).CrossRefGoogle Scholar
  5. C. Vidal, A. Pacault: In Evolution of Order and Chaos, ed. by H. Haken (Springer-Verlag, Heidelbergg 1982).Google Scholar
  6. 5.
    N. Kopell, L.N. Howard: Science 180. 1172 (1973).CrossRefADSGoogle Scholar
  7. 6.
    R.J. Field, R.M. Noyes: J. Amer. Chem. Soc. 96, 2001 (1974).CrossRefGoogle Scholar
  8. 7.
    K. Showalter, R.M. Noyes, H.J. Turner: Amer. Chem. Soc. 101, 7463 (1979).CrossRefGoogle Scholar
  9. 8.
    H. Sevcikova, M. Marek: Physica 13D, 379 (1984).ADSGoogle Scholar
  10. 9.
    P. Ortoleva, J. Ross: J. Chem. Phys. 58. 5673 (1973).CrossRefADSGoogle Scholar
  11. 10.
    J.M. Bodet, J. Ross, C. Vidal: J. Chem. Phys. 86, 4418 (1987).CrossRefADSGoogle Scholar
  12. 11.
    P.M. Wood, J. Ross: J. chem. Phys. 82, 1924 (1985).CrossRefADSGoogle Scholar
  13. 12.
    H. Shuldkrot, J. Ross: J Chem. Phys. 82, 1 13 (1985).CrossRefGoogle Scholar
  14. 13.
    A. Pagola, J. Ross, C. Vidal: J. Phys. Chem. (submitted)Google Scholar
  15. 14.
    P. Keener, J. Tyson: Physica 21D, 307 (1986).ADSMathSciNetGoogle Scholar
  16. 15.
    E.S. Hedges: In Lieseaana Rinas and Other Periodic Structures. Chapman and Hall: London, (1932).Google Scholar
  17. 16.
    S.K. Stern: Chem. Rev. 54, 1954 (1979).Google Scholar
  18. 17.
    K.H. Stern: In “A Bibliography of Liesegang Rings,” 2nd ed.; U.S. Governement Printing Office: Washington, D.C., (1967).Google Scholar
  19. 18.
    M. Levan, J. Ross: J. Phys. Chem. (submitted)Google Scholar
  20. 19.
    S. Kai, S.C. Muller, J. Ross: J. Chem. Phys. 76, 1392 (1982).CrossRefADSGoogle Scholar
  21. 20.
    S.C. Muller, S. Kai, J. Ross: J. Phys. Chem. 86, 4078 (1982).CrossRefGoogle Scholar
  22. 21.
    S. Kai, S.C. Muller, J. Ross: J. Phys. Chem. 87, 806 (1983).CrossRefGoogle Scholar
  23. 22.
    S.C. Muller, S. Kai, J. Ross: Science 216, 635 (1982).CrossRefADSGoogle Scholar
  24. 23.
    S.C. Muller, S. Kai, J. Ross: J. Phys. Chem.86, 4294 (1982).CrossRefGoogle Scholar
  25. 24.
    R. Lovett, P. Ortoleva, J. Ross; J. Chem. Phys., 69. 947 (1978).ADSGoogle Scholar
  26. 25.
    D. Feinn, P. Ortoleva, W. Scalf, S. Schmidt, M. Wolff: J. Chem. Phys. 69. 27 (1978).CrossRefADSGoogle Scholar
  27. 26.
    C. Wagner: J. colloid Sci. 5, 85 (1950).CrossRefGoogle Scholar
  28. 27.
    S. Prager: J. Chem. Phys. 25, 279 (1956).CrossRefADSGoogle Scholar
  29. 28.
    D.A. Smith: J. Chem. Phys. 81, 3102 (1984).CrossRefADSGoogle Scholar
  30. 29.
    G. Venzl, J. Ross; J. Chem. Phys. 77, 1302 (1982).ADSGoogle Scholar
  31. 30.
    G.T. Dee: pnys. Rev. Lett. 57, 275 (1986).CrossRefADSGoogle Scholar
  32. 31.
    M.E. LeVan, Ph.D. Dissertation, Stanford University, Stanford, CA., 1987.Google Scholar
  33. 32.
    J.B. Keller, S.I. Runbinow: J. Chem. Phys. 74. 5000 (1982).CrossRefADSGoogle Scholar
  34. 33.
    M. Flicker, J. Ross: J. Chem. Phys. 60. 3458 (1974).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Ross
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations