Advertisement

On the Analogy of Anomalous Viscous Fingers with Crystalline Dendrites

  • Y. Couder
Part of the Springer Series in Synergetics book series (SSSYN, volume 41)

Abstract

Saffman Taylor fingering and dendritic growth are, at first sight, very different physical processes. The first phenomenon corresponds to the instability of a moving fluid interface while the second is observed during crystallization at the interface where phase transition occurs. The patterns formed in the two experiments usually look very different. It was soon noticed however that there were strong analogies and only a few differences between the equations describing the destabilization of both types of fronts. In fact as the equations resemble each other, it is rather the differences in behaviour which need to be understood. It is the purpose of the present article to show that it is possible experimentally to obtain viscous fingers which are very close analogues of the crystalline dendrites. The means by which these fingers are obtained is by creating a local disturbance of their tip. This is in good agreement with the recent theoretical progress on the singular role of surface tension acting at the tip of viscous fingers.

Keywords

Surface Tension Capillary Number Dendritic Growth Small Bubble Linear Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. Saffman, J. Fluid Mech. 173, 73 (1986)CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    G. M. Homsy, Ann. Rev. Fluid Mech. 19, 271 (1987)CrossRefADSGoogle Scholar
  3. 3.
    D. Bensimon, L. P. Kadanoff, S. Liang, B.I. Shraiman and Chao Tang, Rev. Mod. Phys. 58, 977 (1986)CrossRefADSGoogle Scholar
  4. 4.
    J.S.Langer, Rev. Mod. Phys. 52, 1 (1980)CrossRefADSGoogle Scholar
  5. 5.
    D. A. Kessler, J. Koplik and H. Levine, Schlumberger. Preprint (1986)Google Scholar
  6. 6.
    R.L. Chuoke, P. Van Meurs and C. Van der Pol, Tr. AIME 216, 188(1959)Google Scholar
  7. 7.
    W.W. Mullins and R.F. Sekerka J. Appl. Phys. 35, 444, (1964)CrossRefADSGoogle Scholar
  8. 8.(a)
    J. Bataille, Revue Inst. Fr. du Pétrole 23, 1349 (1968)Google Scholar
  9. 8.(b)
    L. Paterson J. Fluid Mech. 113, 513 (1981)CrossRefADSGoogle Scholar
  10. 9.
    P. G. Saffman and G. I. Taylor, Proc. Roy. Soc. London, Ser. A, 245, 312(1958)CrossRefzbMATHADSMathSciNetGoogle Scholar
  11. 10.
    E. Ben Jacob, R. Godbey, N. D. Goldenfeld, J. Koplik, H. Levine, T. Mueller and L. M. Sander, Phys.Rev. Lett. 55, 1315 (1985)CrossRefADSGoogle Scholar
  12. 11.
    Y. Couder, O. Cardoso, D. Dupuy, P. Tavemier and W. Thom, Europhysics Lett. 2, 437 (1986)CrossRefADSGoogle Scholar
  13. 12.
    A. Buka, J. Kertesz and T. Vicsek, Nature 323, 424 (1986)CrossRefADSGoogle Scholar
  14. 13.
    V. Horvath, T. Vicsek and J. Kertesz, Institute for technical physics Budapest. Preprint.Google Scholar
  15. 14.
    Y. Couder, N. Gerard and M. Rabaud, Phys. Rev. A 34, 5175 (1986)CrossRefADSGoogle Scholar
  16. 15.
    D. A. Kessler, J. Koplik and H. Levine, Phys. Rev. A 34, 4980 (1986)CrossRefADSGoogle Scholar
  17. 16.
    D. C. Hong and J. S. Langer, Institute for theoretical physics. University of California Santa Barbara. Preprint.Google Scholar
  18. 17.
    G. Tryggvason, To appear in Proc. of the S.I.A.M. Workshop on multiphase flow (1986)Google Scholar
  19. 18.
    M. Rabaud, Y. Couder and N. Gerard, To appear in Phys. Rev. AGoogle Scholar
  20. 19.
    J. R. Grace and D. Harrison, Chem. Eng. Sci. 22, 1337 (1967)CrossRefGoogle Scholar
  21. 20.
    G. Zocchi, B. E. Shaw, A. Libchaber and L. P. Kadanoff, University of Chicago. Preprint.Google Scholar
  22. 21.
    A. Dougherty, P. D. Kaplan and J. P. Gollub, Department of Physics Haverford College. Preprint.Google Scholar
  23. 22.
    Ya. B. Zel’dovich, A. G. Istratov, N. I. Kidin and V. B. Librovich, Combust. Science Technol. 24, 1 (1980)CrossRefGoogle Scholar
  24. 23.
    P. Pelcé and P. Clavin, Europhys. Lett. 3, 907 (1987)CrossRefADSGoogle Scholar
  25. 24.
    B. Caroli, C. Caroli and B. Roulet, G.P.S. de l’E.N.S. preprint (1987).Google Scholar
  26. 25.
    P.Huerre and P.A. Monkewitz, J.Fluid Mech. 159, 151 (1985)CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 26.
    H. Honjo, S.Ohta and M.Matsushita, J. Phys.Soc.Jap. 55, 2487 (1986)CrossRefADSGoogle Scholar
  28. 27.
    R. Combescot, T. Dombre, V. Hakim, Y. Pomeau and A. Pumir, Phys. Rev. Lett. 58, 2036 (1986)CrossRefADSGoogle Scholar
  29. 28.
    B. Shraiman, Phys. Rev. Lett. 56, 2028 (1986)CrossRefADSGoogle Scholar
  30. 29.
    D. C. Hong and J. Langer, Phys. Rev. Lett. 56, 2032 (1986)CrossRefADSGoogle Scholar
  31. 30.
    L. R. Morris and W. C. Winegard, Journal of Crystal Growth 1, 245 (1967)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Y. Couder
    • 1
  1. 1.Groupe de Physique des Solides de l’Ecole SupérieureParis Cedex 5France

Personalised recommendations