Advertisement

Nonlinear Limit-Cycle Solutions - A Rational Method for Transition Prediction in Shear Flows?

Part of the Springer Series in Synergetics book series (SSSYN, volume 41)

Abstract

3-D limit-cycle solutions are computed for planc Poiscuillc flow by a truncated modal expansion in conjunction with an arclcngth continuation procedure. Aside from a rather small unstable 3-D branch near ß = 0 the preliminary results indicate the existence of a second 3-D branch which can be used for a more rational transition prediction in wall-bounded shear flows.

Keywords

Reynolds Number Friction Factor Transition Prediction Modal Expansion Neutral Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    D.W. Bechert: ZfW 9, 356 (1985)Google Scholar
  2. 2.
    P.A. Monkewitz and L.N. Nguyen: to appear in J. Fluids and Structures 1 (1987)Google Scholar
  3. 3.
    P. Huerre: this volumeGoogle Scholar
  4. 4.
    R.J. Briggs: Research Monograph No. 29 (M.I.T. Press, Cambridge, Mass. 1964)Google Scholar
  5. 5.
    A. Bers: In Physique des Plasmas, eds. C. De Witt and J. Peyraud (Gordon and Breach, New York 1975) p. 115Google Scholar
  6. 6.
    P.J. Strykowski: Ph. D. Thesis, Yale University (1986)Google Scholar
  7. 7.
    B. Fornberg: J. Comp. Physics 61, 297 (1985)CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. 8.
    C.P.Jackson: JFM (1987) (in press)Google Scholar
  9. 9.
    C. Mathis, M. Provansal, L. Boyer: J. Physique Lett. 45, L-483 (1984)CrossRefGoogle Scholar
  10. 10.
    T. Herbert: AIAA Journal 18, 243 (1980)CrossRefzbMATHADSGoogle Scholar
  11. 11.
    K. Hannemann and H. Oertel jr.: submitted to JFM (1987)Google Scholar
  12. 12.
    S.A. Orszag and L.C. Kells: JFM 96, 159 (1980)CrossRefzbMATHADSGoogle Scholar
  13. 13.
    S.A. Orszag and A.T. Patera: JFM 128, 347 (1983)CrossRefzbMATHADSGoogle Scholar
  14. 14.
    B.L. Roshdestvensky and I.N. Simakin: JFM 147, 261 (1984)CrossRefADSGoogle Scholar
  15. 15.
    N. Gilbert and L. Kleiser: ZAMM 67, T281 (1987)CrossRefGoogle Scholar
  16. 16.
    J.-P. Zahn, J. Toomre, E.A. Spiegel, D.O. Gouch: JFM 64, 319 (1974)CrossRefADSGoogle Scholar
  17. 17.
    T. Herbert: AGARD CP-224, 3 (1977)Google Scholar
  18. 18.
    F.A. Milinazzo and P.G. Saffman: JFM 160, 281 (1985)CrossRefzbMATHADSMathSciNetGoogle Scholar
  19. 19.
    T. Herbert: Bull. Amer. Phys. Soc. 26, 1257 (1981)Google Scholar
  20. 20.
    D. Gottlieb, M.Y. Hussaini, S.A. Orszag: In Spectral Methods for Partial Differential Equations, eds. R.G. Voigt, D. Gottlieb, M.Y. Hussaini (SIAM, Philadelphia 1984) p.1Google Scholar
  21. 21.
    H.B. Keller: In Applications of Bifurcation Theory, ed. P. Rabinowitz (Academic, New York 1977) p.359Google Scholar
  22. 22.
    A.D.D. Craik: JFM 50, 393 (1971)CrossRefzbMATHADSGoogle Scholar
  23. 23.
    M.A. Goldshtik, A.M. Lifshits and V.N. Shtcrn: In Laminar - Turbulent Transition, ed. V.V. Kozlov (Springer, Berlin 1985) p. 191CrossRefGoogle Scholar
  24. 24.
    V.C. Patel and M.R. Head: JFM 38, 181 (1969)CrossRefADSGoogle Scholar
  25. 25.
    H. Eckclmann: Mitt. f. Strömungsforschung und AVA Göttingen Nr. 48 (1970)Google Scholar
  26. 26.
    D. Meksyn: Z. Phys. 178, 159 (1964)CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 27.
    M.R. Dhanak: Proc. Roy. Soc. A 385, 53 (1983)ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • W. Koch
    • 1
  1. 1.DFVLR-AVA, Institute for Theoretical Fluid MechanicsGöttingenFed. Rep. of Germany

Personalised recommendations