Advertisement

The Kuramoto-Sivashinsky Equation: A Progress Report

  • P. Manneville
Part of the Springer Series in Synergetics book series (SSSYN, volume 41)

Abstract

Instabilities which develop in continuous media often lead to the formation of cellular structures periodic in space and/or time. One of the most important parameters which control the transition to turbulence in such systems is the aspect ratio. This quantity can be defined as the ratio of the lateral extension of the experimental enclosure to the typical size of the cells generated by the instability mechanism. When this ratio is small, confinement effects are strong. The situation is then best described by a small number of interacting modes and the theory of dissipative dynamical systems applies in a more or less straightforward way. The opposite limit of large aspect ratio has been of much concern recently. As explained by A. Newell in his lecture, the most important features of the dynamics of these structures close to onset are related to long wavelength low frequency spatiotemporal modulations. The dynamics of these modulations can be accounted for by envelope equations, the envelope being generically a complex function, slowly varying at the scale of the individual cells. In the most general approach, one seeks the envelope equation in the laterally infinite case by an expansion formalism involving both the envelope modulus and the inverse of the modulation length scales as small parameters. Lateral boundary conditions are an obvious source of modulation at a well defined lengthscale, the aspect ratio.

Keywords

Lyapunov Exponent Bifurcation Diagram Unstable Mode Inertial Manifold Stability Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kuramoto, T. Tsuzuki: Prog.Theor.Phys. 55, 356 (1976).CrossRefADSGoogle Scholar
  2. 2.
    G.I. Sivashinsky: Acta Astronautica 4, 1177 (1977).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Y. Kuramoto: Prog.Theor.Phys. Supp. 64, 346 (1978).CrossRefADSGoogle Scholar
  4. 4.
    G.I. Sivashinsky, D.M. Michelson: Prog. Theor. Phys. 63, 2112 (1980).CrossRefADSGoogle Scholar
  5. 5.
    R.E. LaQuey, S.M. Majhajan, P.H. Rutherford, W.M. Tang: Phys. Rev. Lett. 34, 391 (1975).CrossRefADSGoogle Scholar
  6. 6.
    Y. Pomeau, P. Manneville: Physics Letters A, 75, 296 (1980).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    G. Gertsberg, G.I. Sivashinsky: Prog. Theor. Phys. 66, 1219 (1981).CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. 8.
    G.I. Sivashinsky: Ann.Rev.Fluid Mech. 15, 179 (1983).CrossRefADSGoogle Scholar
  9. 9.
    P. Coullet, S. Fauve: Phys.Rev.Lett. 55, 2857 (1985).CrossRefADSGoogle Scholar
  10. 10.
    J.M. Burgers J.M.: The nonlinear diffusion equation (D. Reidel, Dordrecht, 1974).zbMATHGoogle Scholar
  11. 11.
    T. Yamada, Y. Kuramoto: Prog.Theor.Phys. 56, 681 (1976).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    D.M. Michelson, G.I. Sivashinsky: Acta Astronautica 4, 1207 (1977).CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    J.M. Hyman, B. Nicolaenko: Physica D18, 113 (1986).ADSMathSciNetGoogle Scholar
  14. 14.
    Y. Pomeau, A. Pumir A., P. Pelce: J.Stat.Phys 37, 39 (1984).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D.M. Michelson: Physica D19, 89 (1986).ADSMathSciNetGoogle Scholar
  16. 16.
    A. Gervois (Saclay): private communication.Google Scholar
  17. 17.
    H.C. Chang: Phys.Fluids 29, 3142 (1986).CrossRefzbMATHADSMathSciNetGoogle Scholar
  18. 18.
    S. Toh: J.Phys.Soc.Japan 56, 949 (1987).CrossRefADSGoogle Scholar
  19. 19.
    O. Thual, U. Frisch, in Combustion and Nonlinear Phenomena, Les Houches, P. Clavin et al Eds. (Editions de Physique, Orsay, 1984).Google Scholar
  20. 20.
    R. Conte (Saclay): private communication.Google Scholar
  21. 21.
    C. Foias, G. Sell, R. Temam: C.R. Acad.Sc.Paris, 301, Sér.I, 139 (1985).zbMATHMathSciNetGoogle Scholar
  22. 22.
    B. Nicolaenko, Physica D20, 109 (1986).ADSMathSciNetGoogle Scholar
  23. 23.
    C. Foias, B. Nicolaenko, G.R. Sell, R. Temam, C.R.Acad.Sc.Paris, 301, Sér.I, 285 (1985).zbMATHMathSciNetGoogle Scholar
  24. 24.
    O. Thual, internal report, Ecole Nationale Météorologie, unpublished (1982).Google Scholar
  25. 25.
    P. Manneville, at Collogue Turbulence Interdisciplinaire, I.H.E.S. (1983) unpublished.Google Scholar
  26. 26.
    J.M. Hyman, B. Nicolaenko, S. Zaleski, Physica D23, 265 (1986).ADSMathSciNetGoogle Scholar
  27. 27.
    B. Shraiman, Phys.Rev.Lett. 57, 325 (1986).CrossRefADSGoogle Scholar
  28. 28.
    B. Nicolaenko, private communication and contribution to the workshop Mathematical modeling of combustion (Lyon, 27–30/04/87).Google Scholar
  29. 29.
    U. Frisch, Z.S. She, O. Thual, J.Fluid Mech. 168, 221 (1986).CrossRefzbMATHADSMathSciNetGoogle Scholar
  30. 30.
    M.T. Aimar, P. Penel, at Collogue National d’Analyse Numerique, Guidel (1983); O. Robinson, Thesis (Toulon University, 1987).Google Scholar
  31. 31.
    J.P. Eckmann, D. Ruelle, Rev.Mod.Phys. 57, 617 (1985).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    C. Grebogi, E. Ott, J.A. Yorke, Physica D7, 181 (1983).ADSMathSciNetGoogle Scholar
  33. 33.
    P. Manneville, in Lect. Notes in Physics, 230, 319 (Springer-Verlag, Berlin, 1985).Google Scholar
  34. 34.
    J.D. Farmer: Physica D4, 366 (1982).ADSMathSciNetGoogle Scholar
  35. 35.
    D. Ruelle, Commm.Math.Phys. 87, 287 (1982).CrossRefzbMATHADSMathSciNetGoogle Scholar
  36. 36.
    Y. Pomeau, P. Manneville, Commun.Math.Phys. 74, 189 (1980).CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    J. Swift, P.C. Hohenberg, Phys.Rev. A15, 319 (1977).ADSGoogle Scholar
  38. 38.
    H. Chate, P. Manneville, Phys.Rev.Lett. 58, 112 (1987).CrossRefADSGoogle Scholar
  39. 39.
    Y. Pomeau, Physica D23, 3 (1986).ADSGoogle Scholar
  40. 40.
    W. Kinzel, in Percolation structures and processes, G.Deutcher et al. Eds., Annals of the Israel Phys.Soc 5, 425 (1983).Google Scholar
  41. 41.
    K. Kaneko, Prog. Theor. Phys. 74, 1033 (1985).CrossRefzbMATHADSGoogle Scholar
  42. 42.
    H. Chate, P. Manneville, C.R. Acad.Sc. Paris 304 Sér.II, 609 (1987).MathSciNetGoogle Scholar
  43. 43.
    A. Pumir, J.de Physigue 46, 511 (1985).CrossRefMathSciNetGoogle Scholar
  44. 44.
    U. Frisch, in Dynamical systems: a renewal of mechanism S.Diner, D.Fargue, G.Lochak, Eds. (World Scientific, Singapore, 1987).Google Scholar
  45. 45.
    B. Mandelbrot, J.Fluid Mech. 62, 331 (1974).CrossRefzbMATHADSGoogle Scholar
  46. 46.
    R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, J. Phys. A17, 3521 (1984).ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • P. Manneville
    • 1
  1. 1.IRF-DPh-G/PSRM, CEN-SaclayGif-sur-YvetteFrance

Personalised recommendations