Defects in Waves

  • L. Gil
  • J. Lega
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 41)


Among instabilities that lead to the formation of spatial periodic structures, Rayleigh- Bénard convection is one of the most famous and useful phenomena for studying systems driven far from equilibrium by a set of external parameters [1]. Another example of pattern formation is convection in liquid crystals [2], where many rolls can easily be observed. Such behaviors have been widely studied both experimentally and theoretically [3]. In those experiments, the periodic structure gives rise to spatial order, as the appearance of rhythms, in more confined systems, leads to temporal order. In the same way, spontaneous breaking of both space and time translational symmetries leads to spatio-temporal order, and corresponds to wave motion [4–12]. In real-life experiments, ordered states are the exception rather than the rule, and one typically sees many patches of locally ordered structures, linked together by narrow transition regions. Grain boundaries in convective experiments [13] or dislocations occurring in nonequilibrium cellular structures [14–17] can be regarded as defects of the spatial order. By analogy, one can expect the existence of spatio-temporal order breaking singularities. These are, for instance, defect lines connecting spatially extended regions of counter propagating waves, or dislocations of travelling and standing waves. The aim of this paper is the phenomenological study of defects in waves, using both topological arguments and numerical simulations, in the framework of amplitude equations.


Rayleigh Number Standing Wave Stable Solution Defect Line Closed Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. H. Busse, Rep. Prog. Phys. 41, 1929 (1978).CrossRefADSGoogle Scholar
  2. 2.
    P. G. de Gennes, The Physics of Liquid Crystals, Clarendon Oxford (1974).Google Scholar
  3. 3.
    Cellular Structures in Instabilities, Vol.210 of Lecture Notes in Physics, edited by J.Wesfried and S.Zaleski (Springer-Verlag, New York, 1984) and references quoted therein.Google Scholar
  4. 4.
    J. F. Nye and M. V. Berry, Proc. R. Soc. Lond. A 336, 165 (1974).ADSMathSciNetGoogle Scholar
  5. 5.
    I. Rehberg and G. Ahlers, Phys. Rev. Lett. 55, 500 (1985).CrossRefADSGoogle Scholar
  6. 6.
    P. Coullet, S. Fauve and E. Tirapegui J. Phys. Lett. 46, 787 (1985).CrossRefGoogle Scholar
  7. 7.
    P. Chossat and G. Iooss, Japan J. Appl. Maths. 2, 37 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    H. R. Brand, P. S. Lomdahl and A. C. Newell, Phys. Lett. A 118, 67 (1986).ADSGoogle Scholar
  9. 9.
    E. Moses and V. Steinberg, Phys. Rev. A 34, 693 (1986).ADSGoogle Scholar
  10. 10.
    E. Knobloch, A. Deane, J. Toomre and D. R. Moore, Proc. AMS Conference on Multiparameter Bifurcation Theory, edited by M.Golubitsky and J.Guckenheimer, Areata, USA (1986).Google Scholar
  11. 11.
    E. Moses, J. Fineberg and V. Steinberg, Phys. Rev. A35, 2757 (1987)ADSGoogle Scholar
  12. E. Moses, J. Fineberg and V. Steinberg, Spatio-temporal complexity at the onset of convection in a binary fluid, to appear in Nuclear Physics B (Proc. Suppl.) The Physics of Chaos and Systems far from Equilibrium, edited by M.Duong-van and B.Nichols.Google Scholar
  13. 12.
    A. Joets and R. Ribotta, preprint.Google Scholar
  14. 13.
    P. Manneville and Y. Pomeau, Phys. Mag. A 48, 607 (1983).CrossRefADSGoogle Scholar
  15. 14.
    E. D. Siggia and A. Zippelius, Phys. Rev. A 24, 1036 (1981).ADSGoogle Scholar
  16. 15.
    Y. Pomeau, P. Manneville and S. Zaleski, Phys. Rev. A 27, 2710 (1983).ADSMathSciNetGoogle Scholar
  17. 16.
    G. Tesauro and M. C. Cross, Phys. Rev. A 34, 1363 (1986).ADSGoogle Scholar
  18. 17.
    A. Pocheau and V. Croquette, J.Phys.(Paris) 45, 35 (1984).CrossRefGoogle Scholar
  19. 18.
    L. A. Segel, J. Fluid Mech. 38, 203 (1969).CrossRefzbMATHADSGoogle Scholar
  20. 19.
    A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279 (1969).CrossRefzbMATHADSGoogle Scholar
  21. 20.
    Y. Kuramoto, Prog. Theor. Phys. 71, 1182 (1984).CrossRefzbMATHADSMathSciNetGoogle Scholar
  22. 21.
    D. Mermin in Rev. Mod. Phys. 51, 591 (1979).CrossRefADSMathSciNetGoogle Scholar
  23. 22.
    G. Toulouse and M. Kleman, J. de Physique Lettres 37, 149 (1976).CrossRefGoogle Scholar
  24. 23.
    P. Coullet, C. Elphick, L. Gil and J. Lega, Phys. Rev. Lett. 59, 884 (1987).CrossRefADSGoogle Scholar
  25. 24.
    U. Frisch, Z. S. She and O. Thual, J. Fluid Mech. 168, 221 (1986).CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. 25.
    R. W. Walden, P. Kolodner, A. Passner and C. M. Surko, Phys. Rev. Lett. 55, 496 (1985).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • L. Gil
    • 1
  • J. Lega
    • 1
  1. 1.Laboratoire de Physique TheoriqueNice CedexFrance

Personalised recommendations