The Dynamics of Patterns: A Survey

  • A. C. Newell
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 41)


A survey of the derivation and properties of the phase and amplitude equations in systems far from equilibrium is given. We study both the near onset and far from onset cases. In the former, both the amplitude and phase are governed by partial differential equations and, for real boundary conditions, the effects of large scale mean drift fields are minimal. The most interesting new developments concern the role that modulational instabilities play when the dominant microscopic structures are travelling or standing waves. In particular, it is shown that localized and strongly disordered behavior can occur. The application of these ideas in the context of convection in binary fluid mixtures is discussed. Far from onset amplitudes are slaved through algebraic equations to the modulus of the phase gradient, but mean drift effects become more important. I discuss the role that defects and focus singularities of the phase equation play in completing one’s understanding of the pattern dynamics. In particular, I suggest that the structure and dynamics of defects can be found from singular (particle-like) solutions of the phase equation and illustrate this idea in two cases. First, I find the shape of the dislocation solution in high Prandtl number fluids. Second, I compute solutions which describe the breaking of the circular symmetry about a focus singularity in which the focus (umbilicus) is shifted off-center by a dipole shaped mean drift. Finally, building on ideas first proposed by Gollub, McCarriar and Steinman, I suggest a specific mechanism for the onset of turbulence in convecting fluids of low to moderate Prandtl number at Rayleigh numbers of about 4.5 Rc. The transition involves two features. First, the wavenumber selected by circular patches about sidewall focus singularities approaches the skew varicose instability boundary and the pattern attempts to eliminate rolls through defect nucleation. Second, and crucial to sustaining the time dependence, I show that the advection of wavenumber by mean drift overcomes the stabilizing effect of diffusion and causes the focus singularities to act as sources of wavenumber. It is the continual production of wavenumber and the resulting defect nucleation initiated by skew varicose instabilities which together lead to the turbulent behavior of the pattern.


Prandtl Number Rayleigh Number Modulational Instability Phase Equation Circular Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability (Oxford, 1961)zbMATHGoogle Scholar
  2. 2.
    F. H. Busse, Rep. Prog. Phys. 41, 1929 (1978)CrossRefADSGoogle Scholar
  3. 3.
    A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279 (1969)CrossRefzbMATHADSGoogle Scholar
  4. 4.
    L. A. Segel, J. Fluid Mech. 38, 203 (1969)CrossRefzbMATHADSGoogle Scholar
  5. 5.
    G. Dee and J. Langer, Phys. Rev. Lett. 50, 383 (1983)CrossRefADSGoogle Scholar
  6. 6.
    M. C. Cross, P. G. Daniels, P. C. Hohenberg and E. D. Siggia, J. Fluid Mech. 127, 155 (1983)CrossRefzbMATHADSMathSciNetGoogle Scholar
  7. 7.
    W. Arter, A. Bernoff and A. C. Newell, to be published, Physics of Fluids LettersGoogle Scholar
  8. 8.
    L. Kramer, E. Ben Jacob, H. Brand and M. C. Cross, Phys. Rev. Lett. 49, 1891 (1982)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    E. D. Siggia and A. Zippelius, Phys. Rev. A24, 1036, (1981)ADSGoogle Scholar
  10. 10.
    A. Bernoff, to be published, J. Fluid Mech. 1987Google Scholar
  11. 11.
    E. W. Bolton, F. H. Busse and R. M. Clever, J. Fluid Mech. 164, 469 (1986)CrossRefzbMATHADSMathSciNetGoogle Scholar
  12. 12.
    A. C. Newell and J. A. Whitehead, Proc. IUTAM Conf. on Instabilities in Continuous Systems, Herrenalb, 1969, ed. H. Leipholz (Springer, Berlin, 1971) 284–289CrossRefGoogle Scholar
  13. 13.
    A. C. Newell, Lectures in Applied Mathematics 15 (Am. Math. Soc., Providence, 1974) 157Google Scholar
  14. 14.
    C. G. Lange and A. C. Newell, SIAM J. of Appl. Math. 27, 441 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    A. C. Newell, Pattern Formation and Pattern Recognition, ed. H. Haken (Springer, Berlin, 1979) 244CrossRefGoogle Scholar
  16. 16.
    H. R. Brand, P. S. Lomdahl and A. C. Newell, Physica 23D, 345, (1986)ADSGoogle Scholar
  17. 17.
    H. R. Brand, P. S. Lomdahl and A. C. Newell, Phys. Lett. 118A, 67 (1986)ADSGoogle Scholar
  18. 18.
    K. Stewartson and J. T. Stuart, J. Fluid Mech. 48, 529 (1971)CrossRefzbMATHADSMathSciNetGoogle Scholar
  19. 19.
    M. C. Cross, Phys. Rev. Lett. 57, 2935 (1986)CrossRefADSGoogle Scholar
  20. 20.
    J. T. Stuart and R. DiPrima, Proc. R. Soc. Lond. A362, 27 (1978)CrossRefADSGoogle Scholar
  21. 21.
    H. T. Moon, P. Huerre and Redekopp, Physica 7D, 135 (1983)ADSMathSciNetGoogle Scholar
  22. 22.
    L. Keefe, Stud, in Appl. Math 73, 91 (1985)zbMATHGoogle Scholar
  23. 23.
    C. R. Doering, J. D. Gibbon, D. D. Holm and B. Nicoleanko, Nonlinearity, to appearGoogle Scholar
  24. 24.
    J. Powell, to be publishedGoogle Scholar
  25. 25.
    G. Ahlers, Private CommunicationGoogle Scholar
  26. 26.
    H. Brand, A. C. Newell, J. Powell and B. Zielinska, In preparationGoogle Scholar
  27. 27.
    C. Bretherton and E. Spiegel, Phys. Lett. A96, 152 (1983)CrossRefADSGoogle Scholar
  28. 28.
    K. Nozaki and N. Bekki, Phys. Rev. Lett. 51, 2171 (1983)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    K. Nozaki and N. Bekki, J. Phys. Soc. Jap. 53, 1581 (1984)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    G. Ahlers, D. S. Cannell and R. Heinricks, This Volume. See also: Phys. Rev. A35, 2761 (1987)Google Scholar
  31. 31.
    V. Steinberg and E. Moses, Phys. Rev. A34, 693 (1986). See also this Volume and article in Patterns, Defects and Micro-Structures, Proc. NATO Advanced Workshop, Austin 1986. Ed. D. Walgraef.ADSGoogle Scholar
  32. 32.
    R. W. Walden, P. Kolodner, A. Passner and C. M. Surko, Phys. Rev. Lett. 55, 496 (1985)CrossRefADSGoogle Scholar
  33. 33.
    G. B. Whitham, J. Fluid Mech. 44, 373 (1970)CrossRefzbMATHADSMathSciNetGoogle Scholar
  34. 34.
    L. N. Howard and N. Kopell, Stud, in Appl. Math. 56, 95 (1977)zbMATHGoogle Scholar
  35. 35.
    M. C. Cross and A. C. Newell, Physica 10D, 299 (1984)ADSMathSciNetGoogle Scholar
  36. 36.
    A. C. Newell, Lecture Notes in Num. App. Anal. 5, 205 (1982)Google Scholar
  37. 37.
    F. H. Busse and R. M. Clever, J. Fluid Mech. 91, 391 (1979)CrossRefGoogle Scholar
  38. 38.
    J. P. Gollub, A. R. McCarriar and J. F. Steinman, J. Fluid Mech. 125, 259 (1982).CrossRefADSGoogle Scholar
  39. See also J. P. Gollub and J. F. Steinman, Phys. Rev. Lett 47, 505 (1981)CrossRefADSGoogle Scholar
  40. 39.
    J. P. Gollub and A. R. McCarriar, Phys. Rev. A26, 3470 (1982)CrossRefADSGoogle Scholar
  41. 40.
    G. Ahlers and R. Behringer, Phys. Rev. Lett. 40, 712 (1978)CrossRefADSGoogle Scholar
  42. 41.
    V. Croquette, M. Mony and F. Schosseier, J. Phys. (Paris) 44, 293 (1983)CrossRefGoogle Scholar
  43. 42.
    P. Berge, in Chaos and Order in Nature. Ed. H. Haken. Springer-Verlag, Berlin 1981)Google Scholar
  44. 43.
    V. Steinberg, G. Ahlers and D. S. Cannell, Physica Scripta 32, 534 (1985)CrossRefADSGoogle Scholar
  45. 44.
    M. S. Heutmaker, P. N. Frankel and J. P. Gollub, Phys Rev. Lett. 54, 1369 (1985)CrossRefADSGoogle Scholar
  46. 45.
    M. S. Heutmaker and J. P. Gollub, Phys. Rev. A35, 242 (1987)CrossRefADSGoogle Scholar
  47. 46.
    G. Ahlers, V. Steinberg and D. S. Cannell, Phys. Rev. Lett. 54, 1373 (1985)CrossRefADSGoogle Scholar
  48. 47.
    V. Croquette and A. Pocheau, To appear Lecture Notes in Physics 1987. Also see J. Phys. (Paris) 45, 35 (1984)Google Scholar
  49. 48.
    P. Kolodner, R. W. Wadden, A. Passner and C. M. Surko, J. Fluid Mech. 163, 195 (1986)CrossRefADSGoogle Scholar
  50. 49.
    W. Arter and A. C. Newell. To be published, Physics of FluidsGoogle Scholar
  51. 50.
    Y. Pomeau and P. Manneville, J. Physique Lett. 40, 609 (1979)CrossRefMathSciNetGoogle Scholar
  52. 51.
    Y. Pomeau and P. Manneville, J. Phys. (Paris) 42, 1067 (1981)CrossRefMathSciNetGoogle Scholar
  53. 52.
    I. Rehberg and H. Riecke, Physics of Structure Formation. Proc. Conf. Tubingen, 1986. To be published Springer-VerlagGoogle Scholar
  54. 53.
    Y. Pomeau, S. Zaleski and P Manneville, Phys. Rev. A27, 2710 (1983)CrossRefADSMathSciNetGoogle Scholar
  55. 54.
    H. S. Greenside and W. M. Coughran, Phys. Rev. A30, 398 (1986)CrossRefADSGoogle Scholar
  56. 55.
    S. Zaleski, Y. Pomeau and S. Pumir, Phys Rev. A29, 366 (1984)CrossRefADSGoogle Scholar
  57. 56.
    D. Meiron and A. C. Newell, Phys. Lett. 113A, 289 (1985)ADSGoogle Scholar
  58. 57.
    M. C. Cross, G. Tesauro and H. Greenside, to be published in Physica D (1987)Google Scholar
  59. 58.
    A. Bernoff, to be published 1987Google Scholar
  60. 59.
    A. Pocheau, Thesis, March 1987, “Spatial Structures and Phase Turbulence in Rayleigh-Benard Convection”Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. C. Newell
    • 1
  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations