Advertisement

Wave Propagation in Chemical Nonequilibrium Systems: New Experimental Results

  • Z. Nagy-Ungvarai
  • S. C. Müller
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 41)

Abstract

In oscillating chemical reactions the concentration of intermediate species shows periodical behavior in time. Oscillations are usually observed and investigated in batch systems (simply a stirred volume in a beaker) or in continuous-flow stirred-tank reactors (CSTR) with continuous flow of reactants. In unstirred systems, when diffusion of the intermediates is coupled with such chemical reactions of highly nonlinear kinetics, the formation of reaction-diffusion patterns in one, two, or three dimensions in solutions of the reacting mixtures is observed.

Keywords

Wave Front Excitable Medium Malonic Acid Spiral Wave Transmitted Light Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.C. Bray: J. Am. Chem. Soc. 43, 1262 (1921)CrossRefGoogle Scholar
  2. 2.
    B.P. Belousov: Sb. Ref. Radiats. Med., Medgiz, Moscow, p.145 (1959)Google Scholar
  3. 3.
    A.M. Zhabotinskii: Biofizika 9, 306 (1964)Google Scholar
  4. A.M. Zhabotinskii: Dokl. Akad. Nauk. SSSR 157, 392 (1964)Google Scholar
  5. 4.
    R.J. Field, E. Körös, R.M. Noyes: J. Am Chem. Soc. 94, 8649 (1972)CrossRefGoogle Scholar
  6. 5.
    R.J. Field, M. Burger: In Oscillations and Traveling Waves in Chemical Systems (Wiley, New York 1985)Google Scholar
  7. 6.
    R.J. Field, H.-D. Försterling: J. Phys. Chem. 90, 5400 (1986)CrossRefGoogle Scholar
  8. 7.
    P. Glansdorff, I. Prigogine: In Thermodynamics of Structure, Stability and Fluctuations (Wiley, New York 1971)Google Scholar
  9. 8.
    H. Haken: Synergetics 3rd ed. (Springer, Heidelberg 1983)Google Scholar
  10. 9.
    T.S. Briggs, W.C. Rauscher: J. Chem. Educ. 50, 496 (1973)CrossRefGoogle Scholar
  11. 10.
    J. Boissonade, P. De Kepper: J. Phys. Chem. 84, 501 (1980)CrossRefGoogle Scholar
  12. 11.
    P. De Kepper, I.R. Epstein, K. Kustin: J. Am. Chem. Soc. 103, 2133 (1981)CrossRefGoogle Scholar
  13. 12.
    M. Orban, C. Dateo, P. De Kepper, I.R. Epstein: J. Am. Chem. Soc. 104, 5911 (1982)CrossRefGoogle Scholar
  14. 13.
    I.R. Epstein, K. Kustin: Structure and Bonding 56, 1 (1984)CrossRefGoogle Scholar
  15. 14.
    M. Orban, E. Körös: J. Phys. Chem. 82, 1672 (1978)CrossRefGoogle Scholar
  16. 15.
    M. Orban, I.R. Epstein: J. Phys. Chem. 87, 3212 (1983)CrossRefGoogle Scholar
  17. 16.
    M. Atlamgir, M. Orban, I.R. Epstein: J. Phys. Chem. 87, 3725 (1983)CrossRefGoogle Scholar
  18. 17.
    P. De Kepper, I.R. Epstein, K. Kustin: J. Am. Chem. Soc. 103, 6121 (1981)CrossRefGoogle Scholar
  19. 18.
    G.A. Papsin, A. Hanna, K. Showalter: J. Chem. Phys. 85, 2575 (1981)CrossRefGoogle Scholar
  20. 19.
    J.H. Jensen: J. Am. Chem. Soc. 105, 2639 (1983)CrossRefGoogle Scholar
  21. 20.
    M. Burger, R.J. Field: Nature 307, 720 (1984)CrossRefADSGoogle Scholar
  22. 21.
    M. Orban, I.R. Epstein: J. Am. Chem. Soc. 107, 2302 (1985)CrossRefGoogle Scholar
  23. 22.
    M. Orban: J. Am. Chem. Soc. 108, 6893 (1986)CrossRefGoogle Scholar
  24. 23.
    M. Orban, I.R. Epstein: J. Am. Chem. Soc. 109, 101 (1987)CrossRefGoogle Scholar
  25. 24.
    R. Luther: Z. Electrochem. 12, 596 (1906)Google Scholar
  26. 25.
    A.N. Zaikin, A.M. Zhabotinskii: Nature 225, 535 (1970)CrossRefADSGoogle Scholar
  27. 26.
    D. Thoenes: Nature Phys. Sci. 282, 198 (1973)Google Scholar
  28. 27.
    A.T. Winfree: Science 181, 937 (1973)CrossRefADSGoogle Scholar
  29. 28.
    A.T. Winfree: Faraday Symp. Chem. Soc. 9, 38 (1974)CrossRefGoogle Scholar
  30. 29.
    M. Orban: J. Am. Chem. Soc. 102, 4311 (1980)CrossRefGoogle Scholar
  31. 30.
    K.-W. Pehl, L. Kuhnert, H. Linde: Nature 282, 198 (1979)CrossRefADSGoogle Scholar
  32. 31.
    P. De Kepper, I.R. Epstein, K. Kustin, M. Orban: J. Phys. Chem. 86, 170 (1982)CrossRefGoogle Scholar
  33. 32.
    K. Showalter: J. Phys. Chem. 85, 440 (1981)CrossRefGoogle Scholar
  34. 33.
    T.A. Gribshaw, K. Showalter, D.L. Banville, I.R. Epstein: J. Phys. Chem. 85, 2152 (1981)CrossRefGoogle Scholar
  35. 34.
    P.M. Wood, J. Ross: J. Chem. Phys. 82, 1924 (1985)CrossRefADSGoogle Scholar
  36. 35.
    S.C. Müller, Th. Plesser, B. Hess: Science 230, 661 (1985)CrossRefADSGoogle Scholar
  37. 36.
    S.C. Müller, Th. Plesser, B. Hess: Ber. Bunsenges. Phys. Chem. 89, 654 (1985)Google Scholar
  38. 37.
    S.C. Müller, Th. Plesser, B. Hess: Naturwissenschaften 73, 165 (1986)CrossRefADSGoogle Scholar
  39. 38.
    S.C. Müller, Th. Plesser, B. Hess: Physica 24D, 71 (1987) and 24D, 87 (1987)ADSGoogle Scholar
  40. 39.
    J.P. Keener, J. Tyson: Physica 21D, 307 (1986)ADSMathSciNetGoogle Scholar
  41. 40.
    R.J. Field, R.M. Noyes: J. Am. Chem. Soc. 96, 2001 (1974)CrossRefGoogle Scholar
  42. 41.
    L. Kuhnert, H.-J. Krug, L. Pohlmann: J. Phys. Chem. 89, 2022 (1985)CrossRefGoogle Scholar
  43. L. Kuhnert, H.J. Krug: J.Phys. Chem. 91, 730 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Z. Nagy-Ungvarai
    • 1
  • S. C. Müller
    • 1
  1. 1.Max-Plank-Institut für ErnährungsphysiologieDortmund 1Fed. Rep. of Germany

Personalised recommendations