Skip to main content

Protein Kinase C and Protein F1: Potential Molecular Mediators of Lesion-Induced Synaptic Plasticity Recapitulate Developmental Plasticity

  • Conference paper
  • 89 Accesses

Abstract

This review is focused on the suggestion that a potential molecular mechanism involving protein kinase C and its substrate protein F1 may be directly involved in the process of mediating lesion-induced neuronal plasticity. As several chapters in this Volume illustrate, after damage to the nervous system, intact neurons show growth activities such as axonal sprouting. Under certain conditions this can lead to recovery of function, in whole or in part. The mechanisms for this process are not known, though some recent clues from biochemistry suggest particular proteins that may be essential for the process. In this review I wish to emphasize one essential point: that the input-dependent molecular mechanism related to synaptic growth of intact synapses is also recruited by injury-produced growth factors that stimulate the response to nerve injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers RF, Routtenberg A (1985) Kinase C phosphorylates a protein involved in synaptic plasticity. Brain Res 334: 147–151

    Article  PubMed  CAS  Google Scholar 

  • Akers, RF, Lovinger D, Colley P, Linden D, Routtenberg A (1986) Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science 231: 587–589

    Article  PubMed  CAS  Google Scholar 

  • Benowitz LI, Lewis ER (1983) Increased transport of 44000- to 49000-dalton acidic proteins during regeneration of the goldfish optic nerve: a two-dimensional gel analysis. J Neurosci 3: 2153–2163

    PubMed  CAS  Google Scholar 

  • Berger TW (1984) Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning. Science 224: 627–630

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Stelzner D (1983) Plasticity of the corticospinal tract following mid-thoracic spinal injury in postnatal rat. J Comp Neurol 221: 382–400

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Lomo T (1973) Long lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J Physiol 232: 357–374

    PubMed  CAS  Google Scholar 

  • Burgess SK, Sahyoun N, Blanchard SG, LeVine H III, Chang KJ, Cuatrecasas P (1986) Phorbol ester receptors and protein kinase C in primary neuronal cultures: development and stimulation of endogenous phosphorylation. J Cell Biol 102: 312–319

    Article  PubMed  CAS  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257: 7847–7851

    PubMed  CAS  Google Scholar 

  • Douglas RM, Goddard GV (1975) Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res 86: 205–215

    Article  PubMed  CAS  Google Scholar 

  • Gispen WH, Leunissen JLM, Oestreicher AB, Verkleij AJ, Zwiers H ( 1985 a) Presynaptic localization of B-50 phosphoprotein: the ( ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism. Brain Res 328: 381–385

    Article  CAS  Google Scholar 

  • Gispen WH, Dongen CJ van, Graan PNE de, Oestreicher AB, Zwiers H ( 1985 b) The role of phosphoprotein B50 in phosphoinositide metabolism in brain synaptic plasma membranes. In: Bleasdale JE, Hauser G, Eichberg J (eds) Inositol and phosphoinositides. Humana, Dallas, pp 399–414

    Chapter  Google Scholar 

  • Gispen WH, Graan PNE de, Chan SY, Routtenberg A (1986) Comparison between the neural acidic proteins B50 and F1. In: Gispen WH, Routtenberg A (eds) Phosphoproteins in neuronal function, Prog Brain Res, vol 69. Elsevier, Amsterdam, pp 383–386

    Chapter  Google Scholar 

  • Harreveld A van, Fifkova E (1975) Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic stimulation. Exp Neurol 49: 736–739

    Article  PubMed  Google Scholar 

  • Hsu L, Natyzak D, Laskin JD (1984) Effects of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate on neurite outgrowth from chick embryonic sensory ganglia. Cancer Res 44: 4607–4614

    PubMed  CAS  Google Scholar 

  • Kalil K, Reh T (1979) Regrowth of severed axons in the neonatal CNS; establishment of normal connections. Science 205: 1158–1161

    Article  PubMed  CAS  Google Scholar 

  • Katz F, Ellis L, Pfenninger KH (1985) Nerve growth cones isolated from fetal rat brain: calcium-dependent protein phosphorylation. J Neurosci 5: 1402–1411

    PubMed  CAS  Google Scholar 

  • Kikkawa U, Takai Y, Minakuchi R, Inohara S, Nishizuka Y (1982) Calcium-activated, phospholipid-dependent protein kinase from rat brain. J Biol Chem 257: 13341–13348

    PubMed  CAS  Google Scholar 

  • Kraft AS, Andersen WB (1983) Phorbol esters increase the amount of calcium, phospholipid- dependent protein kinase associated with the plasma membrane. Nature 301: 621–623

    Article  PubMed  CAS  Google Scholar 

  • Kristjansson GI, Zwiers H, Oestreicher AB, Gispen WH (1982) Evidence that the synaptic phosphoprotein B50 is localized exclusively in nerve tissue. J Neurochem 39: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Larson J, Lynch G (1986) Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232: 985–988

    Article  PubMed  CAS  Google Scholar 

  • Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8: 791–797

    Article  PubMed  CAS  Google Scholar 

  • Lovinger DM, Akers RF, Nelson RB, Barnes CA, McNaughton BL, Routtenberg A (1985 a) A selective increase in the phosphorylation of protein F1, a protein kinase C substrate, directly related to three day growth of long term synaptic enhancement. Brain Res 343: 137–143

    Google Scholar 

  • Macara IG (1985) Oncogenes, ions, and phospholipids. Am J Physiol 248: C3–C11

    PubMed  CAS  Google Scholar 

  • Murphy KMM, Gould RJ, Oster-Granite ML, Gearheart JD, Snyder SH (1983) Phorbol esters receptors: autoradiographic identification in the developing rat. Science 222: 1036–1038

    Article  PubMed  CAS  Google Scholar 

  • Nelson RB, Routtenberg A (1985) Characterization of the 47kD protein Fl (pi 4.5), a kinase C substrate directly related to neural plasticity. Exp Neurol 89: 213–224

    Article  PubMed  CAS  Google Scholar 

  • Nelson RB, Routtenberg A, Hyman C, Pfenninger KH (1985) A phosphoprotein, F1, directly related to neuronal plasticity in adult rat brain may be identical to a major growth cone membrane protein. Soc Neurosci Abstr 11: 927

    Google Scholar 

  • Niedel JE, Kuhn LJ, Vandenbark GR (1983) Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci USA 80: 36–40

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233: 305–312

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher AB, Dekker LV, Gispen WH (1986) A radioimmunoassay for the phosphoprotein B50: distribution in rat brain. J Neurochem 46: 1366–1369

    Article  PubMed  CAS  Google Scholar 

  • Perrone-Bizzozero NI, Finklestein SP, Benowitz LI (1986) Synthesis of a growth-associated protein by embryonic rat cerebrocortical neurons in vitro. J Neurosci 6: 3721–3730

    PubMed  CAS  Google Scholar 

  • Rosenthal A, Chan SY, Henzel W et al. (1987) Primary structure and mRNA localization of protein F1, a growth-related protein kinase C substrate, associated with synaptic plasticity. EMBO J 6: 3641–3646

    PubMed  CAS  Google Scholar 

  • Routtenberg A (1982) Memory formation as a posttranslational modification of brain proteins. In: Marsden CA, Matthies H (eds) Mechanisms and models of neural plasticity. Proc Vlth Intl Neurobiol IBRO Symposium on Learning and Memory. Raven, New York, pp 17–24

    Google Scholar 

  • Routtenberg A (1984) Brain phosphoproteins kinase C and protein Fl: Protagonists of plasticity in particular pathways. In: Lynch G, McGaugh J, Weinberger N (eds) Neurobiology of learning and memory. The Guilford Press, New York, pp 479–490

    Google Scholar 

  • Routtenberg A (1985) Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth. Behav Neural Biol 44: 186–200

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg A (1986) Synaptic plasticity and protein kinase C. In: Gispen WH, Routtenberg A (eds) Phosphoproteins in the nervous system. Elsevier, Amsterdam, pp 211–234

    Chapter  Google Scholar 

  • Routtenberg A, Ehrlich YH (1975) Endogenous phosphorylation of four cerebral cortical membrane proteins: role of cyclic nucleotides, ATP and divalent cations. Brain Res 92: 415–430

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg A, Ehrlich YH, Rabjohns R (1975) Effect of a training experience on phosphorylation of a specific protein in neocortical and subcortical membrane preparations. Fed Proc 34: 293

    Google Scholar 

  • Routtenberg A, Lovinger D, Cain S, Akers R, Steward O (1983) Effects of long-term potentiation of perforant path synapses in the intact hippocampus on in vitro phosphorylation of a 47 KD protein (F-1). Fed Proc 42: 755

    Google Scholar 

  • Routtenberg A, Lovinger D, Steward O (1985) Selective increase in the phosphorylation of a 47 kD protein ( F1) directly related to long-term potentiation. Behav Neural Biol 43: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Skene JHP (1984) Growth-associated proteins and the curious dichotomies of nerve regeneration. Cell 37: 697–700

    Article  PubMed  CAS  Google Scholar 

  • Skene JHP, Willard M (1981 a) Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J Cell Biol 89: 86–95

    Google Scholar 

  • Skene JHP, Willard M (1981 b) Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous system. J Cell Biol 89: 96–103

    Article  CAS  Google Scholar 

  • Skene JHP, Willard M (1981 c) Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons. J Neurosci 1: 419–426

    Google Scholar 

  • Snipes GJ, Chan S, McGuire CB, Costello BR, Routtenberg A, Norden JJ, Freeman JA (1987) Evidence that GAP-43, a growth-related protein, and F1, a synaptic plasticity-associated protein, are identical. J Neurosci 7: 4066–4075

    PubMed  CAS  Google Scholar 

  • Will BE, Kelche CR (1979) Effects of different postoperative environments on the avoidance behavior of rats with hippocampal lesions: recovery or improvement of function? Behav Neural Biol 27: 96

    Article  PubMed  CAS  Google Scholar 

  • Wolf MP, Cuatrecasas P, Sahyoun N (1985) Interaction of protein kinase C with membranes is regulated by Ca + +, phorbol esters, and ATP. J Biol Chem 260: 15718–15722

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Routtenberg, A. (1988). Protein Kinase C and Protein F1: Potential Molecular Mediators of Lesion-Induced Synaptic Plasticity Recapitulate Developmental Plasticity. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics