The Influence of Magnetic Field on the Sheath Cell-Axon Interactions

  • K. Shibib
  • M. Brock
  • G. Gosztonyi
  • S. N. Erne
  • H.-D. Hahlbohm
  • G. Schoknecht
Conference paper


The geomagnetic field which is a part of the meteorological variables, is related to biological activities, especially to the orientation of microorganisms, insects, birds and fishes (Bamberger et al. 1978; Blackmore 1975; Brown et al. 1979; Chernyshev et al. 1978; Chervinets et al. 1979; Kirschvink 1981; Vilches-Troya et al. 1984; Wehner 1979). Variations in geomagnetic field have been correlated to congenital anomalies (Archer 1978; Archer 1979), psychological and convulsive disorders (Pokorny et al. 1966; Rajam et al. 1981), to the incidence of myocardial infarction (Bellossi et al. 1985; Knox et al. 1979), and to death rate variations (Feinleib et al. 1975). These variation can alter the growth and metabolism of cells (Kholodov 1964; Kopanev et al. 1979; Liboff et al. 1984; Shibib et al.; Sutherland et al. 1978). Because of the possible importance of biomagnetic phenomena in the nervous system, we developed experimental models to examine the effect of magnetic field variations on the cellular interactions of the developing nervous system of newborn rats.


Purkinje Cell Schwann Cell Molecular Layer Trigeminal Nerve Optic Chiasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman J (1972) Postnatal development of cerebellar cortex in the rat. I. The external germinal layer in the transitional molecular layer. J Comp Neurol 145: 353–394PubMedCrossRefGoogle Scholar
  2. Altman J (1979) Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of the cerebellar microneurons. J Comp Neurol 136: 269–294CrossRefGoogle Scholar
  3. Archer VE (1978) Geomagnetism, cancer, weather and cosmic radiation. Health-Phys 34 (3): 237–247PubMedCrossRefGoogle Scholar
  4. Archer VE (1979) Anencephalus, drinking water, geomagnetism and cosmic radiation. Am J Epidemiol 109 (1): 88–97PubMedGoogle Scholar
  5. Asbury AK (1976) Schwann cell proliferation in developing mouse sciatic nerve. J Cell Biol 34: 735–743CrossRefGoogle Scholar
  6. Bamberger S, Valet G, Stroch F, Ruhenstroth-Bauer G (1978) Electromagnetically induced fluid streaming as a possible mechanism of the biomagnetic orientation of organisms. Z Naturforsch (C) 33 (1–2): 159–160Google Scholar
  7. Bellossi A, de-Certaines J, Bernard AM (1985) Is there an association between myocardial infarction and geomagnetic activity? Int J Biometeorol 29 (1): 1–6PubMedCrossRefGoogle Scholar
  8. Blackmore R (1975) Magnetotactic bacteria. Science 190 (4212): 377 - 379CrossRefGoogle Scholar
  9. Brown HR, Ilyinsky OB, Muravejko VM, Corshkov ES (1979) Evidence that geomagnetic variations can be detected by lorenzinian ampullae. Nature 277 (5698): 648–649PubMedCrossRefGoogle Scholar
  10. Chernyshev VB, Afonina VM (1978) Effect of electric field on the behaviour of Drosophila melangaster. Biol Bull Acad Sci USSR 5 (5): 577–584PubMedGoogle Scholar
  11. Chervinets VM, Novitskii-Yui, Pavloich SA (1979) Magnetic susceptibility of microorganisms. J Hyg Epidemiol Microbiol Immunol 23 (3): 256–260PubMedGoogle Scholar
  12. Corliss CE (1976) CNS elements of clinical development. In: Patten’s human embryology. McGraw-Hill Inc, pp 195–226Google Scholar
  13. Feinleib M, Rogot E, Sturrock PA (1975) Solar activity and mortality in the United States. Int J Epidemiol 4 (3): 227–229PubMedCrossRefGoogle Scholar
  14. Friede RL, Samorajski T (1968) Myelin formation in the sciatic nerve of the rat. A quantitative electron microscopic, histochemical and radioautographic study. J Neuropathol Exp Neurol 27: 546–570PubMedCrossRefGoogle Scholar
  15. Friede RL, Samorajski T (1967) Relation between the number of myelin lammelae and axon circumference in fiber of the vagus and sciatic nerve of mice. J Comp Neurol 130: 223–232PubMedCrossRefGoogle Scholar
  16. Herndon RM (1964) The fine structures of the rat cerebellum. II. The stellate neurons, granule cells and glia. J Cell Biol 23: 277–293PubMedCrossRefGoogle Scholar
  17. Hinkle I, McCaig CD, Robinson KR (1981) The direction of growth of differentiating neurons, and myoblasts from frog embryos in an electric field. J Physiol 314: 121–135PubMedGoogle Scholar
  18. Jaffe LF, Poo Muming (1979) Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 209: 115–128PubMedCrossRefGoogle Scholar
  19. Kirschvink JL (1981) The horisontal magnetic dance of the honeybee is comatable with a single-domain ferromagnetic magnetoreceptor. Biosystems 14 (2): 193–203PubMedCrossRefGoogle Scholar
  20. Kholodov YuA (1964) Effects on the central nervous system. In: Barnothy MF (ed) Biological effects of magnetic fields. Plenum Press, New York, pp 196–208Google Scholar
  21. Knox EG, Armstrong E, Lancashire R, Wall M, Haynes R (1979) Heart attacks and geomagnetic activity. Nature 281 (5732): 564–565PubMedCrossRefGoogle Scholar
  22. Kopanev VI, Efimenko GD, Shakula AV (1979) Biological effect of hypomagnetic environment on the organism. Biol Bull Acad Sci USSR 6: 289–298PubMedGoogle Scholar
  23. Liboff AR, Williams T Jr, Strong DM, Wistar R Jr (1984) Time-varying magnetic field: effect on DNA synthesis. Science 223 (4638): 818–820PubMedCrossRefGoogle Scholar
  24. Peters A (1960) The formation and structure of myelin sheaths in the Central Nervous System. J Biophys Biochem Cytol 8: 431–451PubMedCrossRefGoogle Scholar
  25. Pokorny AD, Mefferd RB Jr (1966) Geomagnetic fluctuations and disturbed behaviour. J Nerv Ment Dis 143 (2): 140–151PubMedCrossRefGoogle Scholar
  26. Rajam M, Mitra S (1981) Correlation between convulsive seizure and geomagnetic activity. Neurosci Lett 24 (2): 187–191CrossRefGoogle Scholar
  27. Robertson D (1955) The ultrastructure of adult vertebrate myelinated peripheral nerves in relation to myelogenesis. J Biophysic and Biochem Cytol 1 (4): 271–286CrossRefGoogle Scholar
  28. Schwan HP (1982) Nonthermal cellular effects of electromagnetic fields: AC-field induced ponderomotoric forces. Br J Cancer 45: 220–224Google Scholar
  29. Shibib K, Brock M, Buljat G, Gosztonyi G, Schoknecht G. Polarization of nerve regeneration. Submitted for publicationGoogle Scholar
  30. Skoff RP, Toland D, Nast E (1980) Pattern of myelination and distribution of neuroglial cells along the developing optic system of the rat and rabbit. J Comp Neurol 191: 237–253PubMedCrossRefGoogle Scholar
  31. Skoff RP (1978) The pattern of myelination along the developing rat optic nerve. Neurosci Lett 7: 191–196PubMedCrossRefGoogle Scholar
  32. Sutherland RM, Marton JP, McDonald JC, Howell RL (1978) Effect of weak magnetic field on growth of cells in tissue culture. Physiol Chem Phys 10 (2): 125–131PubMedGoogle Scholar
  33. Tennekoon GI, Cohen SR, Price DL, McKhann G (1977) Myelogenesis in optic nerve. J Cell Biol 72: 604–616PubMedCrossRefGoogle Scholar
  34. Vilches-Troya J, Dunn RF, Leary DP (1984) Relationship of the vestibular hair cells to magnetic particles in the otolith of guitarfish sacculus. J Comp Neurol 226 (4): 489–494PubMedCrossRefGoogle Scholar
  35. Wehner R, Labhart T (1979) Perception of geomagnetic field in the fly Drosophila melanogaster. Experientia 26 (9): 967–968CrossRefGoogle Scholar
  36. Wikswo JP, Barach JP, Freeman JA (1980) Magnetic field of a nerve impulse: a first measurement. Science 208: 53–55PubMedCrossRefGoogle Scholar
  37. Yu MC, Yu WH (1980) Effect of hypoxia on cerebellar development. Morphologic and radio-autographic study. Exp Neurol 70: 652–664PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Shibib
    • 1
  • M. Brock
    • 1
  • G. Gosztonyi
    • 2
  • S. N. Erne
    • 3
  • H.-D. Hahlbohm
    • 3
  • G. Schoknecht
    • 4
  1. 1.Neurosurgical Department, University Medical Center Steglitz, Free University of BerlinBerlin (West) 45Germany
  2. 2.Institute of NeuropathologyBerlin (West) 45Germany
  3. 3.Physikalisch-Technische BundesanstaltInstitut BerlinBerlin (West) 21Germany
  4. 4.Bundesgesundheitsamt für Sozialmedizin und EpidemiologieBerlin (West) 42Germany

Personalised recommendations