Peripheral and Central Post-Lesion Plasticity in the Olfactory System of the Goldfish: Behavior and Morphology

  • H. P. Zippel
  • D. L. Meyer
  • M. Knaust


The enormous regenerative capacity of primary olfactory receptor neurons of vertebrates has been demonstrated by the findings of a number of investigations. The majority of publications are based on neuroanatomical (see, e.g., the numerous publications by Graziadei et al.), and the minority on physiological findings (electroolfactogram, single cell recordings; see, e.g., Simmons and Getchell 1981 a, b). In the publications cited and in those of other investigators, there is general agreement that olfactory mucosa receptors degenerate following axotomy, and are later replaced by new receptor cells which differentiate from basal cells. Axons of the new olfactory receptors grow out and terminate in the glomerular layer at the surface of the olfactory bulb, where they make synaptic contact with relay neurons. Whilst studies of morphological and physiological aspects have demonstrated a highly developed regenerative capacity, related functional and behavioral investigations have been rare in comparison with the number of similar studies on other sensory and motor systems. Thus, until now, one can only assume that the regenerated sensory neurons, together with their central connections, might be functionally and topographically reorganized in such a way as to enable the animal to appropriately behave and orientate in its olfactory environment.


Olfactory Bulb Olfactory Epithelium Olfactory System Discrimination Training Training Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartheld CS von, Meyer DL, Fiebig E, Ebbesson SOE (1984) Central connections of the olfactory bulb in the goldfish, Carassius auratus. Cell Tissue Res 238: 475–487CrossRefGoogle Scholar
  2. Burns SM, Mitchell JA, Getchell ML, Getchell TV (1981) Functional correlates of degeneration and renewal of cilia and knobs of olfactory receptor neurons in the frog. Chem Sens 6: 307–315CrossRefGoogle Scholar
  3. Butler AB, Graziadei PPC, Monti Graziadei GA, Slotnick BM (1984) Neonatally bulbectomized rats with new olfactory-neocortical connections are anosmic. Neurosci Lett 48: 247–254PubMedCrossRefGoogle Scholar
  4. Constanzo RM (1985) Neural regeneration and functional reconnection following olfactory nerve transection in hamster. Brain Res 361: 258–266CrossRefGoogle Scholar
  5. Doucette JR, Kiernan JA, Flumerfelt BA (1983) The re-innervation of olfactory glomeruli following transection of primary olfactory axons in the central or peripheral nervous system. J Anat 137: 1–19PubMedGoogle Scholar
  6. Evans RE, Hara TJ (1985) The characteristics of the electro-olfactogram (EOG): its loss and recovery following olfactory nerve section in rainbow trout (Salmo gairdneri). Brain Res 330: 65–75PubMedCrossRefGoogle Scholar
  7. Gesteland RC, Yancey RA, Farbman AI (1982) Development of olfactory receptor neuron selectivity in the rat fetus. Neuroscience 7: 3127–3136PubMedCrossRefGoogle Scholar
  8. Graziadei PPC, Monti Graziadei GA (1980) Neurogenesis and neuron regeneration in the olfactory system of mammals. III. Deafferentation and reinnervation of the olfactory bulb following section of the fila olfactoria in rat. J Neurocytol 9: 145–162PubMedCrossRefGoogle Scholar
  9. Graziadei PPC, Monti Graziadei GA (1986) Principles of organization of the vertebrate olfactory glomerulus: an hypothesis. Neuroscience 19: 1025–1035PubMedCrossRefGoogle Scholar
  10. Greer CA, Halasz N (1987) Plasticity of dendrodendritic microcircuits following mitral cell loss in the olfactory bulb of the murine mutant Purkinje cell degeneration. J Comp Neurol 256: 284–298PubMedCrossRefGoogle Scholar
  11. Hudson R, Distel H (1987) Regional autonomy in the peripheral processing of nipple-search odors. Brain Res 421: 85–94PubMedCrossRefGoogle Scholar
  12. Ichikawa M, Ueda K (1977) Fine structure of the olfactory epithelium in the goldfish, Carassius auratus. Cell Tissue Res 183: 445–455PubMedCrossRefGoogle Scholar
  13. Monti Graziadei GA, Karlan MS, Bernstein J J, Graziadei PPC (1980) Reinnervation of the olfactory nerve in monkey (Saimiri scuireus). Brain Res 189: 343–354PubMedCrossRefGoogle Scholar
  14. Samanen DW, Forbes WB (1984) Replication and differentiation of olfactory receptor neurons following axotomy in the adult hamster: a morphometric analysis of postnatal neurogenesis. J Comp Neurol 225: 202–211CrossRefGoogle Scholar
  15. Simmons PA, Getchell TV (1981 a) Neurogenesis in olfactory epithelium: loss and recovery of transepithelial voltage transients following olfactory nerve section. J Neurophysiol 45: 516–528Google Scholar
  16. Simmons PA, Getchell TV (1981 b) Physiological activity of newly differentiated olfactory receptor neurons correlated with morphological recovery from olfactory nerve section in the salamander. J Neurophysiol 45: 529–549Google Scholar
  17. Simmons PA, Rafols JA, Getchell TV (1981) Ultrastructural changes in olfactory receptor neurons following olfactory nerve section. J Comp Neurol 197: 237–257PubMedCrossRefGoogle Scholar
  18. Zippel HP (1970) Verhaltenskomponenten und Differenzierungsvermögen in der straffreien Gruchsdressur beim Goldfisch (Carassius auratus). Z Vgl Physiol 69: 54–78CrossRefGoogle Scholar
  19. Zippel HP, Voigt R (1982) Neuronal correlates of olfactory behavior in goldfish. In: Hara TJ (ed) Chemoreception in fishes. Elsevier Scientific, Amsterdam, pp 181–199Google Scholar
  20. Zippel HP, Westermann RA (1970) Geruchsdifferenzierungsvermögen der Karausche (Carassius carassius) nach funktioneller und histologischer Regeneration des Tractus olfactorius und der Commissura anterior. Z Vgl. Physiol 69: 38–53CrossRefGoogle Scholar
  21. Zippel HP, Baumgarten R von, Westermann RA (1970) Histologische, funktionelle und spezifische Regeneration nach Durchtrennung der Fila olfactoria beim Goldfisch (Carassius auratus). Z Vgl Physiol 69: 79–98CrossRefGoogle Scholar
  22. Zippel HP, Breipohl W, Schoon H (1981) Functional and morphological changes in fish chemoreception systems following ablation of the olfactory bulbs. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 377–394Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H. P. Zippel
    • 1
  • D. L. Meyer
    • 2
  • M. Knaust
    • 1
  1. 1.Physiologisches Institut der UniversitätGöttingenGermany
  2. 2.Anatomisches Institut der UniversitätGöttingenGermany

Personalised recommendations