Skip to main content

“Acute” Vestibular Compensation in the Goldfish: A Visual Substitution Process?

  • Conference paper
  • 88 Accesses

Abstract

Unilateral lesion of a labyrinth causes impairment of posture and locomotion. The subsequent recovery of function with time is usually termed vestibular compensation. The behavioral deficits manifested after hemilabyrinthectomy (HL) have been used to divide the course of compensation into different stages or phases. Most authors (see, e.g., Schaefer and Meyer 1974) distinguish between an acute and a chronic phase, whereby the acute phase begins directly after HL and lasts from a few hours to days depending on species. Another classification (McCabe and Ryu 1969), which is usually applied to mammals, includes an additional, immediately post-operative “critical” phase, which is not always considered to be part of the compensation process (Lacour et al. 1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allum JHJ, Graf W, Dichgans J, Schmidt CL (1976) Visual-vestibular interactions in the vestibular nuclei of the goldfish. Exp Brain Res 26: 463–485

    Article  PubMed  CAS  Google Scholar 

  • Berthoz A, Jeannerod M, Vital Durand F, Oliveras J (1975) Development of vestibulo-ocular responses in visually deprived kittens. Exp Brain Res 23: 425–442

    PubMed  CAS  Google Scholar 

  • Bienhold H, Flohr H (1978) Role of commissural connections between vestibular nuclei in compensation following unilateral labyrinthectomy. J Physiol (Lond) 284: 178

    Google Scholar 

  • Bogenschütz H (1961) Vergleichende Untersuchungen über die optische Komponente der Gleichgewichtshaltung bei Fischen. Z Vgl Physiol 44: 626–655

    Article  Google Scholar 

  • Bone Q, Marshall NB (1985) Biologie der Fische. Fischer, Stuttgart

    Google Scholar 

  • Cawthorne T (1946) Vestibular injuries. Proc R Soc Med 39: 270–273.

    Google Scholar 

  • Courjon JH, Jeannerod M (1979) Visual substitution of labyrinthine defects. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Elsevier, Amsterdam, pp 783–792 (Progress in brain research, vol 50 )

    Chapter  Google Scholar 

  • Courjon JH, Jeannerod M, Ossuzio I, Schmid R (1977) The role of vision in compensation of vestibulo ocular reflex after hemilabyrinthectomy in the cat. Exp Brain Res 28: 235–248

    Article  PubMed  CAS  Google Scholar 

  • Dichgans J, Schmidt CL, Graf W (1973) Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Exp Brain Res 18: 319–322

    PubMed  CAS  Google Scholar 

  • Dieringer N, Precht W (1979 a) Synaptic mechanisms involved in compensation of vestibular function following hemilabyrinthectomy. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Elsevier, Amsterdam, pp 607–615 (Progress in brain research, vol 50)

    Chapter  Google Scholar 

  • Dieringer N, Precht W ( 1979 b) Mechanisms of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system. Exp Brain Res 36: 311–328

    Article  PubMed  CAS  Google Scholar 

  • Dieringer N, Precht W ( 1979 c) Mechanisms of compensation for vestibular deficits in the frog. II. Modification of inhibitory pathways. Exp Brain Res 36: 329–341

    Article  PubMed  CAS  Google Scholar 

  • Fay RR, Olsho L (1979) Discharge patterns of lagenar and saccular neurones of the goldfish eighth nerve: displacement sensitivity and directional characteristics. Comp Biochem Physiol 62A: 377–386

    Article  Google Scholar 

  • Flohr H, Bienhold H, Abeln W, Macskovics I (1981) Concepts of vestibular compensation. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 153–172

    Google Scholar 

  • Frisch K von, Stetter H (1932) Untersuchungen über den Sitz des Gehörsinnes bei der Elritze. Z Vgl Physiol 17: 686–801

    Article  Google Scholar 

  • Furukawa T, Ishii Y (1967) Neurophysiological studies on hearing in goldfish. J Neurophysiol 30: 1377–1403

    PubMed  CAS  Google Scholar 

  • Gage FH, Dunnett SB, Bjorklund A, Stenevi U (1982) Functional recovery following brain dam-age: conceptual frameworks and biological mechanisms. Scand J Psychol Suppl 1: 112–120

    Article  Google Scholar 

  • Holst E von (1935 a) Die Gleichgewichtssinne der Fische. Verh Dtsch Zool Ges 37: 108–114

    Google Scholar 

  • Holst E von (1935b) Über den Lichtrückenreflex bei Fischen. Pubbl Stn Zool Napoli 15: 143–158

    Google Scholar 

  • Holst E von (1948) Quantitative Untersuchungen über Umstimmungsvorgänge im Zentralner-vensystem. I. Der Einfluß des „Appetits“auf das Gleichgewichtsverhalten bei Pterophyllum. ZVgl Physiol 31: 134–148

    CAS  Google Scholar 

  • Holst E von (1950) Die Arbeitsweise des Statolithenapparates bei Fischen. Z Vgl Physiol 32: 60–120

    Article  Google Scholar 

  • Holst E von (1967) Quantitative Messungen von Stimmungen im Verhalten der Fische. Symp Soc Exp Biol 4: 143–173

    Google Scholar 

  • Igarashi M, Alford BR, Kato Y, Levy JK (1975) Effect of physical exercise upon nystagmus and locomotor dysequilibrium after labyrinthectomy in experimental primates. Acta Oto-Laryngol 79: 214–220

    Article  CAS  Google Scholar 

  • Igarashi M, Levy JK, Takahashi M, Alford BR, Homick JL (1979) Effect of exercise upon locomotor balance modification after peripheral vestibular lesions (unilateral utricular neurotomy) in squirrel monkeys. Adv Oto-Rhino-Laryngol 25: 82–87

    CAS  Google Scholar 

  • Igarashi M, Levy JK, O-Uchi T, Reschke MF (1981) Further study of physical exercise and locomotor balance compensation after unilateral labyrinthectomy in squirrel monkeys. Acta Oto-Laryngol 92: 101–105

    Article  CAS  Google Scholar 

  • Jahn T (1960) Optische Gleichgewichtsregelung und zentrale Kompensation bei Amphibien, insbesondere bei der Erdkröte (Bufo bufo L.) Z Vgl Physiol 43: 119–140

    Google Scholar 

  • Jensen DW, Kubo T, Igarashi M (1979) Visual influences on vestibular compensation. Soc Neurosci Abstr 5: 691

    Google Scholar 

  • Klinke R (1970) Efferent influence on the vestibular organ during active movements of the body. Pflügers Arch 318: 325–332

    Article  PubMed  CAS  Google Scholar 

  • Kolb E (1955) Untersuchungen über zentrale Kompensation und Kompensationsbewegungen einseitig entstateter Frösche. Z Vgl Physiol 37: 136–160

    Article  Google Scholar 

  • Lacour M, Xerri C (1980) Compensation of postural reactions to free-fall in the vestibular neurectomized monkey: role of the visual motion cues. Exp Brain Res 40: 103–110

    Article  PubMed  CAS  Google Scholar 

  • Lacour M, Xerri C (1981) Vestibular compensation: new perspectives. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 240–253

    Google Scholar 

  • Lacour M, Roll JP, Appaix M (1976) Modifications and development of spinal reflexes in the älert baboon ( Papio papio) following a unilateral vestibular neurotomy. Brain Res 113: 255–269

    Article  PubMed  CAS  Google Scholar 

  • Lacour M, Xerri C, Hugon M (1979) Compensation of postural reactions to fall in the vestibular neurectomized monkey. Role of the remaining labyrinthine afferences. Exp Brain Res 37: 563–580

    Article  PubMed  CAS  Google Scholar 

  • Lacour M, Vidal PP, Xerri C (1981) Visual influences on vestibulospinal reflexes during vertical linear motion in normal and hemilabyrinthectomized monkeys. Exp Brain Res 43: 383–394

    Article  PubMed  CAS  Google Scholar 

  • Lacour M, Vidal PP, Xerri C (1983) Dynamic characteristics of vestibular and visual control of rapid postural adjustments. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven, New York, pp 589–605

    Google Scholar 

  • Llinäs R, Walton K ( 1979 a) Vestibular compensation: a distributed property of the central nervous system. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igaku-Shoin, Tokyo New York, pp 145–166

    Google Scholar 

  • Llinäs R, Walton K (1979 b) Place of the cerebellum in motor learning. In: Brazier MAB (ed) Brain mechanisms in memory and learning: from the single neuron to man. Raven, New York, pp 17–36 (IBRO monograph series 4)

    Google Scholar 

  • Löwenstein O (1932) Experimentelle Untersuchungen über den Gleichgewichtssinn der Elritze (Phoxinus laevis L.) Z Vgl Physiol 17: 806–854

    Article  Google Scholar 

  • Luyten WHML, Sharp FR, Ryan AF (1986) Regional differences of brain glucose metabolic compensation after unilateral labyrinthectomy in rats: a [14C]2-deoxyglucose study. Brain Res 373: 68–80

    Article  PubMed  CAS  Google Scholar 

  • Manning FB (1924) Hearing in the goldfish in relation to the structure of its ear. J Exp Zool 41: 5–20

    Article  Google Scholar 

  • McCabe BF, Ryu JH (1969) Experiments on vestibular compensation. Laryngoscope 79: 1728–1736

    Article  PubMed  CAS  Google Scholar 

  • Milton RC (1964) An extended table of critical values for the Mann-Whitney (Wilcoxon) two-sample statistic. J Am Statist Ass 59: 925–934

    Article  Google Scholar 

  • Petrosini L (1983) Compensation of vestibular symptoms in hemilabyrinthectomized guinea pigs. Role of the sensorimotor activation. Behave Brain Res 8: 335–342

    Article  CAS  Google Scholar 

  • Pettorossi VE, Petrosini L (1984) Tonic cervical influences on eye nystagmus following hemilabyrinthectomy: immediate and plastic effects. Brain Res 324: 11–19

    Article  PubMed  CAS  Google Scholar 

  • Pfaltz CR (1983) Vestibular compensation: physiological and clinical aspects. Acta Oto-Laryngol 95: 402–106

    Article  CAS  Google Scholar 

  • Pfeiffer W, Riegelbauer G (1978) The effect of the alarm substance on the central nervous excitation of the black tetra Gymnocorymbus ternetzi (Characidae, Ostariophysi, Pisces) indicated by dorsal light response. J Comp Physiol 123: 281–288

    Article  CAS  Google Scholar 

  • Platt C (1983) The peripheral vestibular system of fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology, vol 1: brain stem and sense organs. University of Michigan Press, Ann Arbor, pp 89–123

    Google Scholar 

  • Precht W (1974) Characteristics of vestibular neurons after acute and chronic labyrinthine de-struction. In: Kornhuber HH (ed) Vestibular system, part II. Springer, Berlin Heidelberg New York, pp 451–462 (Handbook of sensory physiology, vol VI/2)

    Google Scholar 

  • Precht W, Dieringer N (1985) Neuronal events paralleling functional recovery (compensation) following peripheral vestibular lesions. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control: facts and theories. Elsevier, Amsterdam, pp 251–268 (Reviews of oculomotor research, vol 1 )

    Google Scholar 

  • Putkonen PTS, Courjon JH, Jeannerod M (1977) Compensation of postural effects of hemilabyrinthectomy in the cat. A sensory substitution process? Exp Brain Res 28: 249–257

    Article  PubMed  CAS  Google Scholar 

  • Sachs L (1968) Statistische Auswertungsmethoden. Springer, Berlin Heidelberg New York Schaefer KP, Meyer DL (1974) Compensation of vestibular lesions. In: Kornhuber HH (ed) Vestibular system, part II. Springer, Berlin Heidelberg New York, pp 463–490 (Handbook of sensory physiology, vol VI/2)

    Google Scholar 

  • Schaefer KP, Meyer DL (1981) Aspects of vestibular compensation in guinea-pigs. In: Flohr H, Precht W (eds) Lesion-induced neural plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 197–207

    Google Scholar 

  • Schoen L (1950) Quantitative Untersuchungen über die zentrale Kompensation nach einseitiger Utriculusausschaltung bei Fischen. Z Vgl Physiol 32: 121–150

    Article  Google Scholar 

  • Traill AB, Mark RF (1970) Optic and static contributions to ocular counter-rotation in carp. J Exp Biol 52: 109–124

    Google Scholar 

  • Vinyard GL, O’Brien WJ (1975) Dorsal light response as an index of prey preference in bluegill (Lepomis macrochirus) J Fish Res Board Can 32: 1860–186

    Google Scholar 

  • Wohlfahrt TA (1932) Anatomische Untersuchungen über das Labyrinth der Elritze (Phoxinus laevis L.) Z Vgl Physiol 17: 659–685

    Google Scholar 

  • Xerri C, Lacour M (1980) Compensation des déficits posturaux et cinétiques après neurectomie vestibulaire unilatérale chez le chat. Rôle de l’activité sensorimotrice. Acta Oto-Laryngol 90: 414–424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burt, A., Flohr, H. (1988). “Acute” Vestibular Compensation in the Goldfish: A Visual Substitution Process?. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics