Advertisement

Multimodal Sensory Substitution Process in Vestibular Compensation

  • C. Xerri
  • M. Lacour
  • L. Borel
Conference paper

Abstract

The post-lesion plasticity which contributes to functional recovery has long been recognized as a basic property of the nervous system. Substitution and/or restitution of neuronal response characteristics in deafferented nervous structures are thought to occur through a remodelling of the neural circuits (structural plasticity) and/or a modification of the neural transmission (synaptic plasticity). Moreover, the adaptation process involving an extensive reorganization of the concerted activity in functionally dependent neural networks might consist of readjusting the sensorimotor programs and redefining appropriate motor strategies.

Keywords

Vestibular Nucleus Vestibular Neuron Vestibular Afferents Vestibular Compensation Sensory Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azzena GB (1969) Role of the spinal cord in compensating the effects of hemilabyrinthectomy. Arch Ital Biol 107: 43–53PubMedGoogle Scholar
  2. Azzena GB, Mameli O, Tolu R (1976) Vestibular nuclei of hemilabyrinthectomized guinea pigs during decompensation. Arch Ital Biol 114: 389–398PubMedGoogle Scholar
  3. Bienhold H, Flohr H (1978) Role of commissural connections between vestibular nuclei in compensation following unilateral labyrinthectomy. J Physiol (Lond) 284: 178Google Scholar
  4. Bienhold H, Flohr H (1980) Role of cholinergic synapses in vestibular compensation. Brain Res 195: 476–478PubMedCrossRefGoogle Scholar
  5. Bienhold H, Abeln W, Flohr H (1981) Drug effects on vestibular compensation. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 265–273Google Scholar
  6. Boyle R, Pompeiano O (1980) Responses of vestibulospinal neurons to sinusoidal rotation of neck. J Neurophysiol 44: 633–649PubMedGoogle Scholar
  7. Courjon JH, Jeannerod M (1979) Visual substitution of labyrinthine defects. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Progress in brain research 50. Elsevier, Amsterdam, pp 783–791CrossRefGoogle Scholar
  8. Courjon JH, Jeannerod M, Ossuzio I, Schmidt R (1977) The role of vision in compensation of vestibulo-ocular reflex after hemilabyrinthectomy in the cat. Exp Brain Res 28: 235–248PubMedCrossRefGoogle Scholar
  9. Dichgans J, Bizzi E, Morasso P, Tagliasco V (1973) Mechanisms underlying recovery of eye-head coordination following bilateral labyrinthectomy in monkeys. Exp Brain Res 18: 548–562PubMedGoogle Scholar
  10. Dieringer N, Precht W ( 1979 a) Mechanism of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system. Exp Brain Res 36: 311–328PubMedCrossRefGoogle Scholar
  11. Dieringer N, Precht W ( 1979 b) Mechanism of compensation for vestibular deficits in the frog. II. Modifications of the inhibitory pathways. Exp Brain Res 26: 329–341CrossRefGoogle Scholar
  12. Dieringer N, Precht W (1981) Functional restitution of static and dynamic reflexes in the frog after hemilabyrinthectomy. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 185–196Google Scholar
  13. Dieringer N, Kunzle H, Precht W (1984) Increased projection of ascending dorsal root fibers to vestibular nuclei after hemilabyrinthectomy in the frog. Exp Brain Res 55: 574–578PubMedCrossRefGoogle Scholar
  14. Ewald JR (1892) Physiologische Untersuchungen iiber das Endorgan der Nervus Octavus. Bergmann, WiesbadenGoogle Scholar
  15. Ezure K, Wilson VJ (1983) Dynamics of neck-to-forelimb reflexes in the cecerebrate cat. J Neurophysiol 50: 688–695PubMedGoogle Scholar
  16. Flohr H (1983) Control of plastic processes. In. Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer, Berlin Heidelberg New York, pp 60–74Google Scholar
  17. Flohr H, Bienhold H, Abeln W, Macskovics I (1981) Concepts of vestibular compensation. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 153–172Google Scholar
  18. Flohr H, Abeln W, Lüneburg U (1985) Neurotransmitter and neuromodulator systems involved in vestibular compensation. In: Berthoz A, Melvill Jones G (eds) Adaptative mechanisms in gaze control. Reviews of Oculomotor Control V. I. Elsevier, Amsterdam, pp 269–277Google Scholar
  19. Galiana HL, Flohr H, Melvill Jones G (1984) A réévaluation of intervestibular nuclear coupling: its role in vestibular compensation. J Neurophysiol 51: 242–259PubMedGoogle Scholar
  20. Hillman DE (1972) Vestibulocerebellar input in the frog: anatomy. In: Brodai A, Pompeiano O (eds) Basic aspects of central vestibular mechanisms. Progress in brain research 37. Elsevier/ North-Holland, Amsterdam, pp 329–339Google Scholar
  21. Igarashi M, Watanabe T, Maxian PM (1970) Dynamic equilibrium in squirrel monkeys after unilateral and bilateral labyrinthectomy. Acta OtoLaryngol 69: 247–253CrossRefGoogle Scholar
  22. Jensen DW (1979) Vestibular compensation: tonic spinal influence upon spontaneous descending vestibular nuclear activity. Neuroscience 4: 1075–1084PubMedCrossRefGoogle Scholar
  23. Jong PTVM de, Jong JMBV de, Cohen B, Jongkess LBW (1977) Ataxia and nystagmus induced by injection of local anesthetics in the neck. Ann Neurol 1: 240–246PubMedCrossRefGoogle Scholar
  24. Kasai T, Zee DS (1978) Eye-head coordination in labyrinthine-defective human beings. Brain Res 144: 123–141PubMedCrossRefGoogle Scholar
  25. Kim JH, Partridge LD (1969) Observations on types of response to combination of neck, vestibular, and muscle stretch signals. J Neurophysiol 32: 239–250PubMedGoogle Scholar
  26. Kolb E (1955) Untersuchungen über zentrale Kompensation und Kompensationbewegungen einseitig enstateter Frösche. Z Vgl Physiol 37: 136–160CrossRefGoogle Scholar
  27. Körte GE, Friedrich VL (1979) The fine structure of the feline superior vestibular nucleus: identification and synaptology of the primary vestibular afferents. Brain Res 176: 3–32PubMedCrossRefGoogle Scholar
  28. Lacour M, Xerri C (1980) Compensation of postural reactions to fall in the vestibular neurectomized monkey. Role of the visual motion cues. Exp Brain Res 40: 103–110PubMedCrossRefGoogle Scholar
  29. Lacour M, Roll JP, Appaix M (1976) Modifications and development of spinal reflexes in the alert baboon ( Papio papio) following an unilateral vestibular neurotomy. Brain Res 113: 255–269PubMedCrossRefGoogle Scholar
  30. Lacour M, Xerri C, Hugon M (1979) Compensation of postural reactions to fall in the vestibular neurectomized monkey. Role of the remaining labyrinthine afferences. Exp Brain Res 37: 563–580PubMedCrossRefGoogle Scholar
  31. Lacour M, Vidal PP, Xerri C (1981) Visual influence on vestibulospinal reflexes during linear vertical motion in normal and hemilabyrinthectomized monkeys. Exp Brain Res 43: 383–394PubMedCrossRefGoogle Scholar
  32. Lacour M, Manzoni D, Pompeiano O, Xerri C (1985) Central compensation of vestibular deficits. III. Response characteristics of lateral vestibular neurons to roll tilt after contralateral labyrinth deafferentation. J Neurophysiol 54: 988–1005PubMedGoogle Scholar
  33. Lindsay KW, Roberts TDM, Rosenberg JR (1976) Asymmetric tonic reflexes and their interaction with neck reflexes in the decerebrate cat. J Physiol (Lond) 261: 583–601Google Scholar
  34. Llinas R, Walton K (1979) Vestibular compensation: a distributed property of the central nervous system. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igaku Shoin Tokyo, pp 145–166Google Scholar
  35. Magnus R (1924) Körperstellung. Springer, BerlinGoogle Scholar
  36. Maioli C, Precht W, Ried S (1982) Vestibulo-ocular and optokinetic reflex compensation following hemilabyrinthectomy in the cat. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. Junk, The Hague, pp 200–208Google Scholar
  37. Maioli C, Precht W, Ried S (1983) Short- and long-term modification of vestibulo-ocular response dynamics following unilateral vestibular nerve lesions in the cat. Exp Brain Res 50: 259–274PubMedCrossRefGoogle Scholar
  38. Manzoni D, Pompeiano O, Stampacchia G (1979) Tonic cervical influences on posture and reflex movements. Arch Ital Biol 117: 81–110PubMedGoogle Scholar
  39. Manzoni D, Pompeiano O, Srivastava UC, Stampacchia G (1983) Responses of forelimb extensors to sinusoidal stimulation of macular labyrinth and neck receptors. Arch Ital Biol 121: 205–214PubMedGoogle Scholar
  40. McCabe BF, Ryu JH (1969) Experiments on vestibular compensation. Laryngoscope 79: 1728–1736PubMedCrossRefGoogle Scholar
  41. McCabe BF, Ryu JH, Sekitani T (1972) Further experiments on vestibular compensation. Laryngoscope 82: 381–396PubMedCrossRefGoogle Scholar
  42. Moore RY, Bjorklund A, Stenevi U (1971) Plastic changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Res 33: 13–35PubMedCrossRefGoogle Scholar
  43. Nelson SG, Mendell LM (1979) Enhancement in Ia-motoneuron synaptic transmission caudal to chronic spinal cord transection. J Neurophysiol 42: 642–654PubMedGoogle Scholar
  44. Pompeiano O, Xerri C, Gianni S, Manzoni D (1984) Central compensation of vestibular deficits. II. Influences of roll tilt on different size lateral vestibular neurons after ipsilateral labyrinth deafferentation. J Neurophysiol 52: 18–38PubMedGoogle Scholar
  45. Precht W (1974) Characteristics of vestibular neurons after acute and chronic labyrinthine destruction. In: Kornhuber HH (ed) Handbook of sensory physiology, vol VI/2. Springer, Berlin Heidelberg New York, pp 451–462Google Scholar
  46. Precht W, Shimazu H, Markham CH (1966) A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 19: 996 - 1010Google Scholar
  47. Precht W, Maioli C, Dieringer N, Cochran S (1981) Mechanisms of compensation of the vestibulo-ocular reflex after vestibular neurotomy. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 222–230Google Scholar
  48. Putkonen PTS, Courjon JH, Jeannerod M (1977) Compensation of postural effects of hemi-labyrinthectomy in the cat. A sensory substitution process? Exp Brain Res 28: 249–257PubMedCrossRefGoogle Scholar
  49. Raisman G (1969) Neuronal plasticity in the septal nuclei of the adult rat. Brain Res 14: 25–48PubMedCrossRefGoogle Scholar
  50. Ried S, Maioli C, Precht W (1984) Vestibular nuclear neuron activity in chronically hemilabyrinthectomized cats. Acta Oto-Laryngol 98: 1–13CrossRefGoogle Scholar
  51. Schaefer KP, Meyer DL (1973) Compensatory mechanisms following labyrinthine lesions in the guinea pig. A simple model of learning. In: Zippel HP (ed) Memory and transfer of information. Plenum, New York, pp 203–232Google Scholar
  52. Schaefer KP, Meyer DL (1974) Compensation of vestibular lesions. In: Kornhuber HH (ed) Handbook of sensory physiology, vol VI/2. Springer, Berlin Heidelberg New York, pp 463–490Google Scholar
  53. Schaefer KP, Meyer DL, Wilhems G (1979) Somatosensory and cerebellar influences on compensation of labyrinthine lesions. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Progress in brain research, vol 50. Elsevier, Amsterdam, pp 591–598CrossRefGoogle Scholar
  54. Shimazu M, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth: its mediating pathway. J Neurophysiol 29: 467–492PubMedGoogle Scholar
  55. Tolu E, Mameli O, Azzena MT, Azzena GB (1980) Dynamic responses of vestibular cell during spinal decompensation. Physiol Behav 25: 637–640PubMedCrossRefGoogle Scholar
  56. Tsukahara N, Hultborn H, Murakami F (1974) Sprouting of cortico-rubral synapses in red nucleus neurons after destruction of the nucleus interpositus of the cerebellum. Experientia (Basel) 30: 57–58CrossRefGoogle Scholar
  57. Xerri C, Lacour M (1980) Compensation des déficits posturaux et cinétiques après neurectomie vestibulaire unilatérale chez le Chat. Rôle de l’activité sensorimotrice. Acta Oto-Laryngol 90: 414–424CrossRefGoogle Scholar
  58. Xerri C, Gianni S, Manzoni D, Pompeiano O (1983) Central compensation of vestibular deficits. I. Response characteristics of lateral vestibular neurons to roll tilt after ipsilateral labyrinth deafferentation. J Neurophysiol 50: 428–448PubMedGoogle Scholar
  59. Xerri C, Gianni S, Manzoni D, Pompeiano O (1985) Central compensation of vestibular deficits. IV. Response characteristics of lateral vestibular neurons to neck rotation after labyrinth deafferentation. J Neurophysiol 54: 1006–1025PubMedGoogle Scholar
  60. Xerri C, Barthélémy J, Borel L, Lacour M (1987) Neuronal coding of linear motion in the vestibular nuclei of the alert cat. III. Dynamic characteristics of visual-otolith interactions. Exp Brain Res 70: 299–309Google Scholar
  61. Xerri C, Pompeiano O, Manzoni D (1988) Central compensation of vestibular deficits. Convergence and interaction fo neck and contralateral macular inputs on lateral vestibular neurons after ipsilateral labyrinth deafferentation. Arch Ital Biol (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • C. Xerri
    • 1
  • M. Lacour
    • 1
  • L. Borel
    • 1
  1. 1.Département de Psychophysiologie, U. A., C. N. R. S., N° 372Université de ProvenceMarseille Cedex 13France

Personalised recommendations