Cervico-Ocular Reflex After Labyrinthine Damage

  • V. E. Pettorossi
  • P. Errico
  • A. Ferraresi
  • R. Fedeli
  • R. M. Santarelli

Abstract

The effects of peripheral vestibular damage on eye motility consist of both eye nystagmus and impairment of vestibulo-ocular reflexes (VOR’s). Although the compensation of nystagmus is complete in the light (Schaefer and Meyer 1973), the recovery of the VOR was less than complete after unilateral and bilateral labyrinthine lesions (Baarsma and Collewijn 1975; Barmack and Pettorossi 1981; Maioli et al. 1983; Paige 1985). In the rabbit, the gain of the VOR remained much less than half of normal after hemilabyrinthectomy (HL) (Baarsma and Collewijn 1975; Barmack and Pettorossi 1981). Thus, in the presence of a labyrinthine lesion a large deficit would remain in the rabbit’s ability to maintain a stable retinal image unless other reflexes may reduce it through a substitution process. Since the optokinetic reflex (OKR) slightly improved the oculomotor reactions (Baarsma and Collewijn 1975) the cervico-ocular reflex (COR) could play a role in the functional recovery. In fact it has been demonstrated that in normal rabbits the COR (1) contributes to maintain gaze stability; (2) sets the range of reflex eye movements toward a more compensatory position depending on the head-body angle (Meiry 1971; Barnes and Forbat 1979; Barmack et al. 1981; Barmack et al. 1985); and (3) undergoes plastic changes in the presence of labyrinthine lesions (Dichgans et al. 1974; Kasai and Zee 1978; Baker et al. 1982). The COR is agonistic to VOR and OKR in compensating for horizontal head displacements by enhancing the gain and decreasing the phase lead of HVOR at low frequencies of stimulation (0.005x0.05 Hz) (Barmack et al. 1981).

Keywords

Drilling Assure Hydrochloride Diazepam Ketamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anastasopoulos D, Mergner T (1982) Canal-neck interaction in vestibular nuclear neurons of the cat. Exp Brain Res 46: 269–280PubMedCrossRefGoogle Scholar
  2. Baarsma EA, Collewijn H (1975) Changes in compensatory eye movements after unilateral labyrinthectomy in the rabbit. Arch Oto-Rhino-Laryngol 211: 219–230CrossRefGoogle Scholar
  3. Baker J, Goldberg J, Peterson B, Schor R (1982) Oculomotor reflexes after semicircular canals plugging in cats. Brain Res 252: 151–155PubMedCrossRefGoogle Scholar
  4. Barmack NH, Pettorossi VE (1981) The influence of unilateral horizontal semicircular canal plugs on the horizontal vestibulo-ocular reflex of the rabbit. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems, symposium proceedings, July 1980, Bremen. Springer, Berlin Heidelberg New York, pp 231–239Google Scholar
  5. Barmack NH, Nastos MA, Pettorossi VE (1981) The horizontal and vertical cervico-ocular reflexes of the rabbit. Brain Res 224: 261–278PubMedCrossRefGoogle Scholar
  6. Barmack NH, Draicchio F, Errico P, Ferraresi A, Pettorossi VE (1985) Characteristics of the combination of the vestibulo- and cervico-ocular reflexes in the control of rabbit eye movements. Proc Physiol Soc J Physiol (Lond) 369: 47Google Scholar
  7. Barnes GR, Forbat LN (1979) Cervical and vestibular afferent control of oculomotor response in man. Acta Oto-Laryngol 88: 79–87CrossRefGoogle Scholar
  8. Dichgans J, Bizzi E, Morasso P, Tagliasco D (1974) The role of vestibular and neck afferents during eye-head coordination in the monkey. Brain Res 71: 225–232PubMedCrossRefGoogle Scholar
  9. Flohr H, Bienhold H, Abeln W, Macskovics I (1981) Concepts of vestibular compensation. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems, symposium proceedings, July 1980, Bremen. Springer, Berlin Heidelberg New York, pp 153–172Google Scholar
  10. Kasai T, Zee DS (1978) Eye-head coordination in labyrinthine-defective human beings. Brain Res 144: 123–141PubMedCrossRefGoogle Scholar
  11. Maioli C, Precht W, Ried S (1983) Short- and long-term modifications of vestibulo-ocular response following unilateral vestibular nerve lesions in the cat. Exp Brain Res 50: 259–274PubMedCrossRefGoogle Scholar
  12. Meiry JL (1971) Vestibular and proprioceptive stabilization of eye movements. In: Bach-y-Rita P, Collins CC, Hyde JE (eds) The control of eye movements. Academic Press, London, pp 483–496Google Scholar
  13. Miles FA, Optican LM, Lisberger SG (1985) An adapting equalizer model of the primate vestibulo-ocular reflex. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control. Elsevier, Amsterdam, pp 313–326Google Scholar
  14. Paige GD (1985) Plasticity in the vestibulo-ocular and optokinetic reflexes following modification of canal input. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control. Elsevier, Amsterdam, pp 145–153Google Scholar
  15. Pettorossi VE, Petrosini L (1984) Tonic cervical influences on eye nystagmus following hemilabyrinthectomy: immediate and plastic effects. Brain Res 324: 11–19PubMedCrossRefGoogle Scholar
  16. Pettorossi VE, Errico P, Ferraresi A, Fedeli R (1987) Vestibular contribution to the orientation of cervico-ocular reflex in rabbit. Brain Res 403: 58–65PubMedCrossRefGoogle Scholar
  17. Rubin AM, Liedgren SCT, Milne AC, Young J A, Fredrickson JM (1977) Vestibular and somatosensory interaction in the cat vestibular nuclei. Pflügers Arch 371: 155–160PubMedCrossRefGoogle Scholar
  18. Schaefer KP, Meyer DL (1973) Compensatory mechanisms following labyrinthine lesions in the guinea pig. A simple model of learning. In: Zippel HP (ed) Memory and transfer of information. Plenum, New York, pp 203–232Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • V. E. Pettorossi
    • 1
  • P. Errico
    • 2
  • A. Ferraresi
    • 2
  • R. Fedeli
    • 2
  • R. M. Santarelli
    • 2
  1. 1.Institute of Human PhysiologyUniversità di PerugiaPerugiaItaly
  2. 2.Institute of Human PhysiologyUniversità Cattolica S. CuoreRomaItaly

Personalised recommendations