Skip to main content

Vestibular Compensation Aspects of Time Course and De-Compensation

  • Conference paper

Abstract

Descriptions of labyrinthectomy symptoms date back as far as the 19th century (Flourens 1824; Goltz 1870; Cyon 1874; Bornhardt 1876; Spamer 1880; Bechterew 1883; Ewald 1892). By the turn of the century it was well established that most of the lesion-induced symptoms are gradually compensated (eliminated); comparative studies on various vertebrate species had been carried out, and Bechterew’s (1883) ingenious experiments involving subsequent lesions of both labyrinths had been a major breakthrough with regard to an understanding of compensatory mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeln W, Bienhold H, Flohr H (1981) Influence of cholinomimetics and cholinolytics on vestibular compensation. Brain Res 222: 458–462

    Article  PubMed  CAS  Google Scholar 

  • Azzena GB (1969) Role of the spinal cord in compensating the effects of hemilabyrinthectomy. Arch Ital Biol 107: 43–53

    PubMed  CAS  Google Scholar 

  • Bechterew W von (1883) Ergebnisse der Durchschneidung des N. acusticus, nebst Erörterung der Bedeutung der semicirculären Canäle für das Körpergleichgewicht. Pflügers Arch 30: 312–347

    Google Scholar 

  • Bienhold H, Flohr H (1978) Role of commissural connections between vestibular nuclei in compensation following unilateral labyrinthectomy. J Physiol (Lond) 284: 178

    Google Scholar 

  • Bienhold H, Flohr H (1980) Role of cholinergic synapses in vestibular compensation. Brain Res 195: 476–478

    Article  PubMed  CAS  Google Scholar 

  • Bienhold H, Abeln W, Flohr H (1981) Drug effects on vestibular compensation. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 265–273

    Google Scholar 

  • Bornhardt A (1876) Experimentelle Beiträge zur Physiologie der Bogengänge des Ohrlabyrinthes. Pflügers Arch 12: 471–521

    Article  Google Scholar 

  • Carpenter MB, Fabrega H, Glinsmann W (1959) Physiological deficits occuring with lesions of labyrinth and fastigial nuclei. J Neurophysiol 22: 222–234

    PubMed  CAS  Google Scholar 

  • Cyon E (1874) Über die Funktion der halbzirkelförmigen Kanäle. Pflügers Arch 8: 306–340

    Article  Google Scholar 

  • DiGiorgio AM (1939) Effetti di lesioni unilaterali della corteccia cerebrale sui fenomeni di compenso da hemislabirintazione. Atti Accad Fisiol Fac Med Siena 11: 382–384

    Google Scholar 

  • Ewald JR (1892) Physiologische Untersuchungen über das Endorgan des N. octavus. Bergmann, Wiesbaden

    Google Scholar 

  • Flohr H, Lüneburg U (1982) Effects of ACTH on vestibular compensation. Brain Res 248: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Flohr H, Bienhold H, Abeln W, Macskovics I (1981) Concepts of vestibular compensation. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 153–172

    Google Scholar 

  • Flohr H, Abeln W, Lüneburg U (1985) Neurotransmitter and neuromodulator systems involved in vestibular compensation. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control, vol 1. Elsevier, Amsterdam, pp 269–277

    Google Scholar 

  • Flourens M (1824) Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertèbres. Crevot, Paris

    Google Scholar 

  • Goltz F (1870) Über die physiologische Bedeutung der Bogengänge des Ohrlabyrinthes. Pflügers Arch 3: 172–193

    Article  Google Scholar 

  • Greene WF, Laurens H (1923) The effect of extirpation of the embryonic ear and eye on equilibrium in Amblyostoma punctatum. Am J Physiol 64: 120–143

    Google Scholar 

  • Holst E von (1954) Einfluß der nichtbelichteten Retina auf das Gleichgewichtsverhalten von Fischen. Naturwissenschaften 41: 507–508

    Article  Google Scholar 

  • Holst E von, Schoen L (1954) Der Einfluß mechanisch veränderter Augenstellungen auf die Richtungslokalisation bei Fischen. Z Vgl Physiol 36: 433–442

    Article  Google Scholar 

  • Horn E (1981) An ontogenetic approach to vestibular compensation mechanisms. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 173–183

    Google Scholar 

  • Horn E, Rayer B (1978) Compensation of vestibular lesions in relation to development. Naturwissenschaften 65: 441

    Article  PubMed  CAS  Google Scholar 

  • Horn E, Greiner B, Horn I (1979) The effect of ACTH on habituation of the turning reaction in the toad Bufo bufo L. J Comp Physiol 131: 129–135

    Article  CAS  Google Scholar 

  • Jahn T (1960) Optische Gleichgewichtsregelung und zentrale Kompensation bei Amphibien, insbesondere bei der Erdkröte (Bufo bufo L.) Z Vgl Physiol 43: 119–140

    Google Scholar 

  • Llinas R, Walton K (1979) Place of the cerebellum in motor learning. In: Brazier MAB (ed) Brain mechanisms in memory and learning: from the single neuron to man, IBRO monograph series 4. Raven, New York, pp 17–36

    Google Scholar 

  • Llinas, R, Walton K, Hillman DE, Sotelo C (1975) Inferior olive: its role in motor learning. Science 190: 1230–1231

    Article  PubMed  CAS  Google Scholar 

  • Lyon EP (1909) On rheotropism. II. Rheotropism of fish blind in one eye. Am J Physiol 24: 244–251

    Google Scholar 

  • Magnus R, Kleijn A de (1913) Analyse der Folgezustände einseitiger Labyrinthexstirpation mit besonderer Berücksichtigung der Rolle der tonischen Halsreflexe. Pflügers Arch 154: 178–306

    Article  Google Scholar 

  • Main RJ (1928) Phototropism in fishes, and its relation to the results obtained by eye dislocation. ZVgl Physiol 7: 611–616

    Google Scholar 

  • Menzio P (1949) Rapporti fra la corteccia cerebrale ed i fenomeni di emislabirintazione. Arch Fisiol 49: 97–104

    Google Scholar 

  • Meyer DL, Bullock TH (1977) The hypothesis of sense-organ-dependent tonus mechanisms. History of a concept. Ann N Y Acad Sci 290: 3–17

    Article  PubMed  CAS  Google Scholar 

  • Putkonen PTS, Courjon JH, Jeannerod M (1977) Compensation of postural effects of hemilabyrinthectomy in the cat. A sensory substitution process? Exp Brain Res 28: 249–257

    Article  PubMed  CAS  Google Scholar 

  • Schaefer K-P, Meyer DL (1973) Compensatory mechanisms following labyrinthine lesions in guinea pigs. A simple model of learning. In: Zippel HP (ed) Memory and transfer of information. Plenum, New York, pp 203–232

    Google Scholar 

  • Schaefer K-P, Meyer DL (1974) Compensation of vestibular lesions. In: Kornhuber HH (ed) Handbook of sensory physiology, vol VI/2. Springer, Berlin Heidelberg New York, pp 463–490

    Google Scholar 

  • Schaefer K-P, Meyer DL (1981) Aspects of vestibular compensation in guinea pigs. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 197–207

    Google Scholar 

  • Schaefer K-P, Wehner H (1966) Zur pharmakologischen Beeinflussung zentralnervöser Kompensationsvorgänge nach einseitiger Labyrinthausschaltung durch Krampfgifte und andere erregende Substanzen. Naunyn-Schmiedebergs Arch Pharmakol Exp Pathol 254: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Schaefer K-P, Wilhelms G, Meyer DL (1978) Der Einfluß von Alkohol auf die zentralnervösen Ausgleichsvorgänge nach Labyrinthausschaltung. Z Rechtsmed 81: 249–260

    Article  PubMed  CAS  Google Scholar 

  • Schaefer K-P, Meyer DL, Wilhelms G (1979) Somatosensory and cerebellar influences on compensation of labyrinthine lesions. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Progress in brain research, vol 50. Elsevier, Amsterdam, pp 591–598

    Chapter  Google Scholar 

  • Sirkin DW, Precht W, Courjon J-H (1984) Initial, rapid phase of recovery from unilateral vestibular lesion in rat not dependent on survival of central portion of vestibular nerve. Brain Res 302: 245–256

    Article  PubMed  CAS  Google Scholar 

  • Spamer C (1880) Experimenteller und kritischer Beitrag zur Physiologie der halbkreisförmigen Kanäle. Pflügers Arch 21: 479–590

    Article  Google Scholar 

  • T’ang Y, Wu CF (1936) The effects of unilateral labyrinthectomy in the albino rat. Chin J Physiol 10: 571–598

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schaefer, KP., Meyer, D.L. (1988). Vestibular Compensation Aspects of Time Course and De-Compensation. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics