Skip to main content

Vestibulo-Ocular Reflex Compensation in the Vertical and Horizontal Planes Following Unilateral Peripheral Vestibular Deficit in Man

  • Conference paper

Abstract

A unilateral peripheral deficit of the vestibular system results in a dramatic impairment of oculomotor function which gradually recedes over a period of months. Because the deficit interrupts the flow of vestibular afferent information from the same side the classical symptoms of unstable eye and head movements are observed. The alteration in vestibulo-ocular reflex (VOR) control indicates that the dynamic balance between vestibular signals reaching the vestibular nuclei directly and via commissural pathways (Shimazu and Precht 1966) has been profoundly affected. The CNS is then challenged to restore normal function. The changes in the VOR make vestibular compensation an attractive model to study plastic and adaptive mechanisms of the CNS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allum JHJ (1985) Automatic on-line nystagmus analysis: methods and clinical applications. In: Moser M, Ranacher G (eds) Computer-vestibulometrie. Thieme, Stuttgart, pp 65–87

    Google Scholar 

  • Allum JHJ, Yamane M, Pfaltz CR (1988) Long-term modifications of vertical and horizontal vestibulo-ocular reflex dynamics in man. I. After acute unilateral peripheral vestibular paralysis. Acta Oto-Laryngol 105: 328–337

    Article  CAS  Google Scholar 

  • Baloh RW, Richman L, Yee RD, Honrubia V (1983) The dynamics of vertical eye movements in normal human subjects. Aviat Space Environ Med 54: 32–38

    PubMed  CAS  Google Scholar 

  • Brandt Th, Allum JHJ, Dichgons J (1978) Computer analysis of optokinetic nystagmus in patients with spontaneous nystagmus of peripheral vestibular origin. Acta Oto-Laryngol 86: 115–122

    Article  CAS  Google Scholar 

  • Cohen B, Suzuki JI, Raphan T (1983) Role of the otolith organs in the generation of horizontal nystagmus: effects of selective labyrinthine lesions. Brain Res 276: 159–164

    Article  PubMed  CAS  Google Scholar 

  • Correia M J, Perachio AA, Eden AR (1985) The monkey vertical vestibuloocular response: a frequency domain study. J. Neurophysiol 54: 532–548

    PubMed  CAS  Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 39: 661–675

    Google Scholar 

  • Fisch V (1973) The vestibular response following unilateral vestibular neurectomy. Acta Oto-Laryngol 76: 229–238

    Article  CAS  Google Scholar 

  • Guedry FE Jr, Stockwell CW, Norman JW, Owens GG (1971) Use of triangular waveforms of angular velocity in the study of vestibular function. Acta Oto-Laryngol 71: 439–448

    Article  Google Scholar 

  • Maioli C, Precht W, Ried S (1983) Short- and long-term modifications of vestibuloocular response dynamics following unilateral vestibular nerve lesions in the cat. Exp Brain Res 50: 259–274

    Article  PubMed  CAS  Google Scholar 

  • Matsuo V, Cohen B (1984) Vertical optokinetic nystagmus and vestibular nystagmus in the monkey: up-down asymmetry and effects of gravity. Exp Brain Res 53: 197–216

    Article  PubMed  CAS  Google Scholar 

  • Olson JE, Wolfe JW (1984) Responses to rotational stimulation of the horizontal canals from patients with acoustic neuromas. Acta Oto-Laryngol Suppl 406: 203–208

    CAS  Google Scholar 

  • Olson JE, Wolfe JW, Engelken EJ (1981) Responses to low frequency harmonic acceleration in patients with acoustic neuromas. Laryngoscope 91: 1270–1277

    PubMed  CAS  Google Scholar 

  • Pfaltz CR, Kamath R (1970) Central compensation of vestibular dysfunction. I. Peripheral lesions. Pract Oto-Rhino-Laryngol 32: 335–349

    CAS  Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc ( VOR ). Exp Brain Res 35: 229–248

    Article  PubMed  CAS  Google Scholar 

  • Ried S, Maioli C, Precht W (1984) Vestibular nuclear neuron activity in chronically hemilabyrin-thectomized cats. Acta Oto-Laryngol 98: 1–13

    Article  CAS  Google Scholar 

  • Schuknecht HF, Kitamura K (1981) Vestibular neuritis. Ann Otol Rhinol Laryngol 90: 78

    Google Scholar 

  • Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29: 467–492

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allum, J.H.J., Yamane, M., Pfaltz, C.R. (1988). Vestibulo-Ocular Reflex Compensation in the Vertical and Horizontal Planes Following Unilateral Peripheral Vestibular Deficit in Man. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics