Skip to main content

Pathfinding and Synaptic Specificity of Regenerating Spinal Axons in the Lamprey

  • Conference paper

Abstract

Recent developments in fetal CNS implantation and use of peripheral nerve bridges and grafts to circumvent a scar have led to optimism that regeneration of injured axons in the CNS may some day be used as a strategy in the treatment of CNS injuries (Björkland and Stenevi 1984; David and Aguayo 1981; Reier 1985; Reier et al. 1983 b). Spinal cord injuries are of particular concern because so much function passes through such a restricted cross-section of CNS and even relatively minor contusions often lead, via vascular reactions, to complete functional transection. Despite evidence of anatomical regeneration of fibers into the distal segments of spinal cord (David and Aguayo 1981; Bregman 1987), bridging and grafting experiments have not yet resulted in functional restoration in spinal cord-injured mammals. Unfortunately, it is difficult in such preparations to answer some fundamental questions concerning the fate of regenerating fibers. Do they conduct normal electrical impulses? Do they regenerate in a specific direction? Can they form physiologically functioning synapses with target neurons distal to the lesion? Are such synapses random or are they specific in some way which might lead to functional recovery? And finally, what guides the regenerating axon as it grows?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernstein DR, Stelzner DJ (1983) Plasticity of the corticospinal tract following midthoracic spinal injury in the postnatal rat. J Comp Neurol 221: 382–400

    Article  PubMed  CAS  Google Scholar 

  • Bjôrklund A, Stenevi V (1984) Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. Annu Rev Neurosci 7: 279–308

    Article  PubMed  Google Scholar 

  • Borgens RB, Roederer E, Cohen M J (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213: 611–617

    Article  PubMed  CAS  Google Scholar 

  • Bregman BS (1987) Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection. Dev Brain Res 34: 265–279

    Article  Google Scholar 

  • Bregman BS, Goldberger ME (1982) Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats. Science 217: 553–555

    Article  PubMed  CAS  Google Scholar 

  • Bregman BS, Goldberger ME (1983) Infant lesion effect. III. Anatomical correlates of sparing and recovery of function after spinal cord damage in newborn and adult cats. Dev Brain Res 9: 137–154

    Article  Google Scholar 

  • Cohen AH, Mackler SA, Selzer ME (1986) Functional regeneration following spinal transection demonstrated in the isolated spinal cord of the larval sea lamprey. Proc Natl Acad Sci USA 83: 2763–2766

    Article  PubMed  CAS  Google Scholar 

  • Curry SN, Ayers J (1983) Regeneration of locomotor command systems in the sea lamprey. Brain Res 279: 23–240

    Google Scholar 

  • David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214: 931–933

    Article  PubMed  CAS  Google Scholar 

  • Guth L, Brewer CR, Collins WF, Goldberger ME, Perl ER (1980) Criteria for evaluating spinal cord regeneration experiments. Exp Neurol 69: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Kalil K, Reh T (1979) Regrowth of severed axons in the neonatal central nervous system: establishment of normal connections. Science 205: 1158–1161

    Article  PubMed  CAS  Google Scholar 

  • Kalil K, Reh T (1982) A light and electron microscopic study of regrowing pyramidal tract fibers. J Comp Neurol 211: 265–275

    Article  PubMed  CAS  Google Scholar 

  • Kiernan J A (1979) Hypotheses concerned with axonal regeneration in the mammalian nervous system. Biol Rev 54: 153–197

    Article  Google Scholar 

  • Mackler SA, Selzer ME (1985) Regeneration of functional synapses between individual recognizable neurons in the lamprey spinal cord. Science 229: 774–776

    Article  PubMed  CAS  Google Scholar 

  • Mackler SA, Selzer ME (1987) Specificity of synaptic regeneration in the spinal cord of the larval sea lamprey. J Physiol (Lond) 388: 183–198

    CAS  Google Scholar 

  • Mackler SA, Yin HS, Selzer ME (1986) Determinants of directional specificity in the regeneration of lamprey spinal axons. J Neurosci 6: 1814–1821

    PubMed  CAS  Google Scholar 

  • Park S, Snedeker JA, Selzer ME (1986) Behavioral recovery in spinal transected lamprey does not require specific behavioral feedback. Soc Neurosci Abstr 12: 425–426

    Google Scholar 

  • Puchala E, Windle WF (1977) The possibility of structural and functional restitution after spinal cord injury. A Review. Exp Neurol 55: 1–42

    Article  CAS  Google Scholar 

  • Reh T, Kalil K (1982) Functional role of regrowing pyramidal tract fibers. J Comp Neurol 211: 276–283

    Article  PubMed  CAS  Google Scholar 

  • Reier P (1985) Neural tissue grafts and repair of the injured spinal cord. Neuropath Appl Neurobiol 11: 81–104

    Article  CAS  Google Scholar 

  • Reier P, Stensaas LJ, Guth L ( 1983 a) The astrocytic scar as an impediment to regeneration in the central nervous system. Spinal Cord Reconstruction, Raven, New York, pp 163–195

    Google Scholar 

  • Reier PJ, Perlow MJ, Guth L (1983 b) Development of embryonic spinal cord transplants in the rat. Dev Brain Res 10: 201–219

    Google Scholar 

  • Rovainen CM (1974a) Synaptic interactions of identified nerve cells in the spinal cord of the sea lamprey. J Comp Neurol 154: 184–206

    Google Scholar 

  • Rovainen CM (1974b) Synaptic interaction of reticulospinal neurons and nerve cells in the spinal cord of the sea lamprey. J Comp Neurol 154: 207–224

    Article  PubMed  CAS  Google Scholar 

  • Rovainen CM (1976) Regeneration of Müller and Mauthner axons after spinal transection in larval lampreys. J Comp Neurol 168: 545–554

    Article  PubMed  CAS  Google Scholar 

  • Sah DWY, Frank E (1984) Regeneration of sensory-motor synapses in the spinal cord of the bullfrog. J Neurosci 4: 2784–2791

    PubMed  CAS  Google Scholar 

  • Selzer ME (1978) Mechanisms of functional recovery and regeneration after spinal cord transection in larval sea lamprey. J Physiol 277: 395–408

    PubMed  CAS  Google Scholar 

  • Smith GM, Miller RH, Silver J (1986) Changing role of forebrain astrocytes during development, regenerative failure, and induced regeneration upon transplantation. J Comp Neurol 251: 23–43

    Article  PubMed  CAS  Google Scholar 

  • Wood MR, Cohen MJ (1979) Synaptic regeneration in identified neurons of the lamprey spinal cord. Science 206: 344–347

    Article  PubMed  CAS  Google Scholar 

  • Wood MR, Cohen MJ (1981) Synaptic regeneration and glial reactions in the transected spinal cord of the lamprey. J Neurocytol 10: 57–79

    Article  PubMed  CAS  Google Scholar 

  • Yin HS, Selzer ME (1983) Axonal regeneration in the lamprey spinal cord. J Neurosci 3: 1135–1144

    PubMed  CAS  Google Scholar 

  • Yin HS, Mackler SA, Selzer ME (1984) Directional specificity in the regeneration of lamprey spinal axons. Science 224: 894–896

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Selzer, M.E., Lurie, D., Mackler, S.S.A. (1988). Pathfinding and Synaptic Specificity of Regenerating Spinal Axons in the Lamprey. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics