Skip to main content

Split Brain Surgically Performed in Developing and in Adult Cats: Physiological Properties and Recovery of Visual Cortex Neurons

  • Conference paper
Post-Lesion Neural Plasticity
  • 88 Accesses

Abstract

Physiologically, several different experimental approaches have been so far adopted in order to demonstrate the involvement of visual cortex cells in interhemispheric relationships. Of these approaches the main ones will be briefly described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonini A, Stefano M Di, Minciacchi D, Tassinari G (1985) Interhemispheric influences on area 19 of the cat. Exp Brain Res 59: 171–184

    Article  PubMed  CAS  Google Scholar 

  • Berlucchi G, Rizzolatti G (1968) Binocularly driven neurons in visual cortex of split-chiasm cats. Science 159: 308–310

    Article  PubMed  CAS  Google Scholar 

  • Berlucchi G, Gazzaniga MS, Rizzolatti G (1967) Microelectrode analysis of transfer of visual information by the corpus callosum. Arch Ital Biol 105: 583–596

    PubMed  CAS  Google Scholar 

  • Blakemore C, Sluyters RC Van (1975) Innate and environmental factors in the development of the kitten’s visual cortex. J Physiol (Lond) 248: 663–716

    CAS  Google Scholar 

  • Blakemore C, Diao Y, Pu M, Wang Y, Xiao Y (1983) Possible functions of the interhemispheric connexions between visual cortical areas in the cat. J Physiol (Lond) 337: 331–349

    CAS  Google Scholar 

  • Cynader M, Lepore F, Guillemot J-P (1981) Inter-hemispheric competition during postnatal development. Nature 290: 139–140

    Article  PubMed  CAS  Google Scholar 

  • Cynader M, Gardner J, Dobbins A, Lepore F, Guillemot JP (1986) Interhemispheric communication and binocular vision: Functional and developmental aspects. In: Lepore F, Ptito M, Jasper HH (eds) Two hemispheres - one brain: functions of the corpus callosum. Alan R Liss, New York, pp 189–209

    Google Scholar 

  • Dreher B, Cotte LJ (1975) Visual receptive-field properties of cells in area 18 of cat’s cerebral cortex before and after acute lesions in area 17. J Neurophysiol 38: 735–750

    PubMed  CAS  Google Scholar 

  • Elberger AJ, Smith III EL (1985) The critical period for corpus callosum section to affect cortical binocularity. Exp Brain Res 57: 213–223

    Article  PubMed  CAS  Google Scholar 

  • Fregnac Y, Imbert M (1978) Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance. J Physiol (Lond) 278: 27–44

    CAS  Google Scholar 

  • Garraghty PE, Salinger WL, Hickey TL (1984) Monocular deprivation with concurrent sagittal transection of the optic chiasm. Dev Brain Res 14: 292–294

    Article  Google Scholar 

  • Harvey AR (1980) A physiological analysis of subcortical and commissural projections of area 17 and 18 of the cat. J Physiol (Lond) 302: 507–534

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160: 106–154

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1967) Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. J Neurophysiol 30: 1561–1573

    PubMed  CAS  Google Scholar 

  • Innocenti GM (1980) The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat. Arch Ital Biol 118: 124–188

    PubMed  CAS  Google Scholar 

  • Innocenti GM, Fiore L, Caminiti R (1977) Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci Lett 4: 237–242

    Article  PubMed  CAS  Google Scholar 

  • Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12: 400–403

    Article  PubMed  Google Scholar 

  • Lepore F, Guillemot JP (1982) Visual receptive field properties of cells innervated through the corpus callosum in the cat. Exp Brain Res 46: 413–424

    Article  PubMed  CAS  Google Scholar 

  • Lepore F, Samson A, Molotchnikoff S (1983) Effects on binocular activation of cells in visual cortex of the cat following the transection of the optic tract. Exp Brain Res 50: 392–396

    Article  PubMed  CAS  Google Scholar 

  • Lepore F, Ptito M, Lassonde M (1986) Stereoperception in cats following section of the corpus callosum and/or the optic chiasma. Exp Brain Res 61: 258–264

    Article  PubMed  CAS  Google Scholar 

  • Luttenberg J, Marsala J (1963) The topography of the commissural fibers in the corpus callosum of the cat’s brain. Cslka Morf 11: 156–176

    Google Scholar 

  • Milleret C, Buser P (1984) Receptive field sizes and responsiveness to light in area 18 of the adult cat after chiasmotomy. Postoperative evolution; role of visual experience. Exp Brain Res 57: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Minciacchi D, Antonini A (1984) Binocularity in the visual cortex of the adult cat does not de-pend on the integrity of the corpus callosum. Behav Brain Res 13: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Myers RE (1955) Interocular transfer of pattern discrimination in cats following section of crossed optic fibers. J Comp Physiol Psychol 48: 470–473

    Article  PubMed  CAS  Google Scholar 

  • Otsuka R, Hassler R (1962) Ãœber Aufbau und Gliederung der corticalen Sehsphäre bei der Katze. Arch Psych Zeit Neurol 203: 212–234

    Article  CAS  Google Scholar 

  • Payne BR, Elberger AJ, Berman N, Murphy EH (1980) Binocularity in the cat visual cortex is reduced by sectioning the corpus callosum. Science 207: 1097–1099

    Article  PubMed  CAS  Google Scholar 

  • Payne BR, Pearson HE, Berman N (1984 a) Role of corpus callosum in functional organization of the striate cortex. J Neurophysiol 52: 570–594

    Google Scholar 

  • Payne BR, Pearson HE, Berman N (1984 b) Deafferentation and axotomy of neurons in cat striate cortex: time course of changes in binocularity following corpus callosum transection. Brain Res 307: 201–215

    Google Scholar 

  • Podell M, Yinon U, Hammer A (1984) Properties of visual cortical cells of the intact and the deafferented hemisphere of unilateral optic tract sectioned acute and chronic adult cats. Exp Brain Res 55: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Polyak S (1957) The vertebrate visual system. University of Chicago Press, Chicago, p 788

    Google Scholar 

  • Shatz C (1977) Abnormal interhemispheric connections in the visual system of Boston Siamese cats: a physiological study. J Comp Neurol 171: 229–246

    Article  PubMed  CAS  Google Scholar 

  • Sperry RW, Stamm JS, Miner N (1956) Relearning tests for interocular transfer following division of the optic chiasma and corpus callosum in cats. J Comp Physiol Psychol 49: 529–533

    Article  PubMed  Google Scholar 

  • Tusa RJ, Rosenquist AC, Palmer LA (1979) Retinotopic organization of areas 18 and 19 in the cat. J Comp Neurol 185: 657–678

    Article  PubMed  CAS  Google Scholar 

  • Vakkur GJ, Bishop PO, Kozak W (1963) Visual optics in the cat, including posterior nodal distance and retinal landmarks. Vision Res 3: 289–314

    Article  Google Scholar 

  • Yinon U, Chen M (1987) Differentiation between disuse and binocular competition effects in visual cortex cells of monocularly deprived split brain kittens. Soc Neurosci Abstr 13: 592

    Google Scholar 

  • Yinon U, Hammer A (1981) Physiological mechanisms underlying responsiveness of visual cortex neurons following optic chiasm split in cats. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 360–68

    Google Scholar 

  • Yinon U, Hammer A (1985) Optic chiasm split and binocularity diminution in cortical cells of acute and of chronic operated adult cats. Exp Brain Res 58: 552–558

    Article  PubMed  CAS  Google Scholar 

  • Yinon U, Podell M (1987) Unilateral visual cortex deafferentation induces changes in receptive field properties of cortical cells in the intact hemisphere of normal and of monocularly dprived cats. Dev Brain Res 33: 205–213

    Article  Google Scholar 

  • Yinon U, Weiser ZD (1985) Deafferentation of the visual cortex and monocular deprivation effects in kittens. Neurosci Lett Suppl 22: S63

    Google Scholar 

  • Yinon U, Hammer A, Podell M (1982) The hemispheric dominance of cortical cells in the absence of direct visual pathways Brain Res 232: 187–190

    CAS  Google Scholar 

  • Yinon U, Podell M, Goshen S (1984) Deafferentation of the visual cortex: the effect on cortical cells in normal and in early monocularly deprived cats. Exp Neurol 83: 486–494

    Article  PubMed  CAS  Google Scholar 

  • Yinon U, Hammer A, Weiser ZD (1985) Split chiasm and monocular deprivation during development: a model of noncompetitive mechanism in visual cortex neurons. Soc Neurosci Abstr 11: 462

    Google Scholar 

  • Yinon U, Chen M, Hammer A (1986 a) Split brain induces monocular dominance of cells in the visual cortex of adult cats. Soc Neurosci Abstr 12: 785

    Google Scholar 

  • Yinon U, Chen M, Hammer A (1986 b) Plasticity induced transfer in the corpus callosum of developing kittens following optic chiasm split and its effect on visual cortex cells. In: Bullier J, Kennedy H (eds) Symposium on Structure and Function in the Visual System, 10–12 Sept 1986. Lyon, France, pp 44

    Google Scholar 

  • Yinon U, Hammer A, Podell M ( 1986 c) Physiological changes in cortical cells following partial and complete visual cortex deafferentation in cats. In: Gilad G, Kreutzberg GW, Gorio A (eds) Processes of recovery from neural trauma. Springer, Berlin Heidelberg New York, pp 150–161

    Chapter  Google Scholar 

  • Yinon U, Achiron A, Podell M, Weiser Z (1987) The deafferented visual cortex: Neuronal activity and visual evoked potentials. Int J Neurosci 33: 85–91

    Article  PubMed  CAS  Google Scholar 

  • Zeki S, Fries W (1980) A function of the corpus callosum in the Siamese cat. Proc R Soc Lond Biol Sci 207: 249–258

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yinon, U., Chen, M. (1988). Split Brain Surgically Performed in Developing and in Adult Cats: Physiological Properties and Recovery of Visual Cortex Neurons. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics