Skip to main content

Reduction of Plasticity in the Primary Visual Cortex of the Rat

  • Conference paper
Post-Lesion Neural Plasticity

Abstract

The influence of the periphery on the structure and function of the representation field in the cerebral cortex has gained attention during the past century. Gudden (1870) investigated the visual cortex of rabbits which had been enucleated as neonatal animals, and found no changes in the cytoarchitectonic structure of the areas of the occipital lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams AD; Forrester JM (1968) The projection of the rat’s visual field on the cerebral cortex. Q J Exp Physiol 53: 327–336

    CAS  Google Scholar 

  • Blue ME, Parnavelas JG (1983) The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J Neurocytol 12: 697–712

    Article  PubMed  CAS  Google Scholar 

  • Burck HC (1973) Histologische Technik. Thieme, Stuttgart

    Google Scholar 

  • Campbell G, So KF, Lieberman AR (1985) Identification of synapses formed by the aberrant, uncrossed retinogeniculate projection in the hamster after neonatal enucleation. Dev Brain Res 21: 137–140

    Article  Google Scholar 

  • Drager UC (1974) Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. Brain Res 82: 284–292

    Article  PubMed  CAS  Google Scholar 

  • Drager UC (1978) Observations on monocular deprivation in mice. J Neurophysiol 41: 28–42

    PubMed  CAS  Google Scholar 

  • Drager UC, Olsen JF (1980) Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J Comp Neurol 191: 383–412

    Article  PubMed  CAS  Google Scholar 

  • Dreher B, Sefton AJ, Ni SYK, Nisbett G (1985) The morphology, number and distribution of class I cells in the retina of albino and hooded rats. Brain Behav Evol 26: 10–48

    Article  PubMed  CAS  Google Scholar 

  • Fifkova E (1970) The effects of monocular deprivation on visual centers in rats. J Comp Neurol 140: 431–438

    Article  PubMed  CAS  Google Scholar 

  • Fifkova E, Hassler R (1969) Quantitative morphological changes in visual centers in rats after monocular deprivation. J Comp Neurol 135: 167–178

    Article  PubMed  CAS  Google Scholar 

  • Fukuda Y, Sumitomo I, Hsaio CF (1983) Effects of neonatal enucleation on excitatory and inhibitory organizations of the albino rat lateral geniculate nucleus. J Neurophysiol 5: 46–60

    Google Scholar 

  • Globus A, Scheibel AB (1967) The effect of visual deprivation on cortical neurons: a Golgi study. Exp Neurol 19: 331–345

    Article  PubMed  CAS  Google Scholar 

  • Gudden B (1870) Experimentaluntersuchungen iiber das periphere und centrale Nervensystem. Arch Psychiatr Nervenkr 2: 693–723

    Article  Google Scholar 

  • Heumann D, Rabinowicz T (1980) Postnatal development of the dorsal lateral geniculate nucleus in the normal and enucleated mouse. Exp Brain Res 38: 75–85

    Article  PubMed  CAS  Google Scholar 

  • Heumann D, Rabinowicz T (1982) Postnatal development of the visual cortex of the mouse after enucleation at birth. Exp Brain Res 46: 99–109

    Article  PubMed  CAS  Google Scholar 

  • Heumann D, Leuba G, Rabinowicz T (1977) Postnatal development of the mouse cerebral cortex. II. Quantitative cytoarchitectonics of visual and auditory areas. J Hirnforsch 18: 483–500

    PubMed  CAS  Google Scholar 

  • Hsiao K (1984) Bilateral branching contributes minimally to the enhanced ipsilateral projection in monocular Syrian golden hamster. J Neurosci 4: 368–373

    PubMed  CAS  Google Scholar 

  • Jeffery G (1984) Retinal ganglion cell death and terminal filed retraction in the developing rodent visual system. Dev Brain Res 13: 81–86

    Article  Google Scholar 

  • Kretschmann HJ, Wingert F (1971) Computeranwendungen bei Wachstumsproblemen in Biologie und Medizin. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lam K, Sefton A, Bennett MR (1982) Loss of axons from the optic nerve of the rat during early postnatal development. Dev Brain Res 3: 487–491

    Article  Google Scholar 

  • Leuba G, Heumann D, Rabinowicz T (1977) Postnatal development of the mouse cerebral neocortex. I. Quantitative cytoarchitectonics of some motor and sensory areas. J Hirnforsch 18: 461–481

    PubMed  CAS  Google Scholar 

  • Lund RD, Cunningham TJ, Lund JS (1973) Modified optic projections after unilateral eye removal in young rats. Brain Behav Evol 8: 51–72

    Article  PubMed  CAS  Google Scholar 

  • Manford M, Campbell G, Lieberman AR (1983) Postnatal development of ipsilateral projections from the eye to the lateral geniculate body in normal albino rats and in rats unilaterally enucleated at birth. J Anat 136: 607–608

    Google Scholar 

  • Manford M, Campbell G, Lieberman AR (1984) Postnatal development of ipsilateral retino-geniculate projections in normal albino rats and the effect of removal of one eye at birth. Anat Embryol 170: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Miller M (1981) Maturation of rat visual cortex. I. A quantitative study of Golgi-impregnated pyramidal neurons. J Neurocytol 10: 859–878

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Peters A (1981) Maturation of rat visual cortex. II. A combined Golgi-electron microscope study of pyramidal neurons. J Comp Neurol 203: 555–573

    Article  PubMed  CAS  Google Scholar 

  • Montero VM (1973) Evoked responses in the rat’s visual cortex to contralateral, ipsilateral and restricted photic stimulation. Brain Res 53: 192–196

    Article  PubMed  CAS  Google Scholar 

  • Montero VM (1981) Comparative studies on the visual cortex. In: Woolsey CN (ed) Cortical sensory organization, vol 2. Humana, Clifton, pp 33–81

    Google Scholar 

  • Parnavelas JG, Uylings HBM (1980) The growth of non-pyramidal neurons in the visual cortex of the rat: a morphometric study. Brain Res 193: 373–382

    Article  PubMed  CAS  Google Scholar 

  • Parnavelas JG, Bradford R, Mounty EJ, Lieberman AR (1978) The development of non-pyramidal neurons in the visual cortex of the rat. Anat Embryol 155: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE, Peters A (1975) An autoradiographic study on the projections from the lateral geniculate body of the rat. Brain Res 92: 341–368

    Article  PubMed  CAS  Google Scholar 

  • Riccio RV, Matthews MA (1985) The postnatal development of the rat primary visual cortex during optic nerve impulse blockade by intraocular tetrodotoxin: a quantitative electron microscopic analysis. Dev Brain Res 20: 55–68

    Article  CAS  Google Scholar 

  • Rogers AW (1973) Techniques in autoradiography. 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Romeis B ( 1968 ) Histologische Technik. Oldenburg, München

    Google Scholar 

  • Ruiz-Marcos A, Valverde F (1970) Dynamic architecture of the visual cortex. Brain Res 19: 25–39

    Article  PubMed  CAS  Google Scholar 

  • Sachs L (1978) Angewandte Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schleicher A, Zilles K, Kretschmann HJ (1978) Automatische Registrierung und Auswertung eines Grauwertindex in histologischen Schnitten. Anat Anz 144: 413–415

    Google Scholar 

  • Schleicher A, Zilles K, Wree A (1986) A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogenei- ties in nervous tissue. J Neurosci Meth 18: 221–235

    Article  CAS  Google Scholar 

  • Schober W, Werner L, Brauer K (1977) Quantitative morphologische Veränderungen im Corpus geniculatum laterale pars dorsalis ( Cgld) der Albinoratte nach unilateraler Enukleation. Anat Anz 142: 385–402

    PubMed  CAS  Google Scholar 

  • Sefton AJ, Lam K (1984) Quantitative and morphological studies on developing optic axons in normal and enucleated albino rats. Exp Brain Res 57: 107–117

    Article  PubMed  CAS  Google Scholar 

  • Shirokawa T, Fukuda Y, Sugimoto T (1983) Bilateral reorganization of rat optic tract following enucleation of one eye at birth. Exp Brain Res 51: 172–178

    Article  PubMed  CAS  Google Scholar 

  • So KF, Woo HH, Jen LS (1984) The normal and abnormal postnatal development of retinogeniculate projections in golden hamsters: an anterograde horseradish peroxidase tracing study. Dev Brain Res 12: 191–205

    Article  Google Scholar 

  • Tsang VC (1937) Visual centers in blinded rats. J Comp Neurol 66: 211–261

    Article  Google Scholar 

  • Uylings HBM, Parnavelas JG, Walg H, Veltman WAM (1980) The morphometry of branching pattern of developing non-pyramidal neurons in the visual cortex of rats. Mikroskopie (Suppl) 37: 220–224

    Google Scholar 

  • Valverde F (1968) Structural changes in the area striata of the mouse after enucleation. Exp Brain Res 5: 274–292

    Article  PubMed  CAS  Google Scholar 

  • Ward R, Tremblay L (1982) Postnatal maturation of the ipsilateral optic tract in pigmented and albino mice. J Hirnforsch 23: 311–313

    PubMed  CAS  Google Scholar 

  • Warren MA, Bedi KS (1984) A quantitative assessment of the development of synapses and neurons in the visual cortex of control and undernourished rats. J Comp Neurol 227: 101–108

    Google Scholar 

  • Werner L, Schober W, Winkelmann E, Mühlig P, Kühne C (1977) Konventionelle und automatische quantitative Untersuchung histologischer Präparate nach experimenteller Beeinflussung des visuellen Systems der Ratte. Verh Anat Ges 71: 127–132

    PubMed  Google Scholar 

  • Werner L, Voss K, Seifert I, Neumann E (1981) Age-related classification of pyramidal and stellate cells in the rat visual cortex: a Nissl study with the “Morphoquant”. J Hirnforsch 22: 397–403

    PubMed  CAS  Google Scholar 

  • Wree A, Schleicher A, Zilles K (1982) Estimation of volume fractions in nervous tissue with an image analyzer. J Neurosci Meth 6: 29–43

    Article  CAS  Google Scholar 

  • Wree A, Zilles K, Schleicher A, Schwientek P (1983) Quantitative Cytoarchitektonik des primären visuellen Cortex der Ratte. Verh Anat Ges 77: 249–250

    Google Scholar 

  • Wree A, Kulig G, Gutmann P, Zilles K (1985) Modification of callosal afferents of the primary visual cortex ipsilateral to the remaining eye in rats monocularly enucleated at different stages of ontogeny. Cell Tissue Res 242: 433–436

    Article  PubMed  CAS  Google Scholar 

  • Wree A, Angenendt HW, Zilles K (1986) The size of the zone of origin of callosal afferents projecting to the primary visual cortex contralateral to the remaining eye in rats monocularly enucleated at different postnatal ages. Anat Embryol 174: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Wree A, Schleicher A, Beck T, Zilles K (in press a) The cortical areas of the posterior cortex of the rat. Fortschr Zool 35

    Google Scholar 

  • Wree A, Schleicher A, Beck T, Zilles K (1987) Quantitative Veränderungen im visuellen Cortex der Ratte nach Enukleation dargestellt mit der (14C)-2-Desoxyglucosetechnik. Verh Anat Ges 81: 871–872

    Google Scholar 

  • Wree A, Schleicher A, Zilles K, Beck T (in press b) Changes in the primary visual cortex caused by enucleation. Fortschr Zool 35

    Google Scholar 

  • Zilles K (1985) The cortex of the rat. A stereotaxic atlas. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zilles K, (1985) Cortex: Areal and laminar structure. In: Paxinos G (ed) The rat nervous system, vol 1. Academic Press, Sydney New York London, pp 375–416

    Google Scholar 

  • Zilles K, Zilles B, Schleicher A (1980) A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. Anat Embryol 159: 335–360

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Blohm U, Koch I (1983) Neurohistologische Methoden. I. Markscheidenfärbung. MTA Praxis 29: 295–297

    Google Scholar 

  • Zilles K, Wree A, Schleicher A, Divac I (1984) The monocular and binocular subfields of the rat’s primary visual cortex: a quantitative approach. J Comp Neurol 226: 391–402

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Schleicher A, Rath M, Glaser T, Traber J (1986) Quantitative autoradiography of transmitter binding sites with an image analyzer. J Neurosci Meth 18: 207–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wree, A., Zilles, K., Schleicher, A. (1988). Reduction of Plasticity in the Primary Visual Cortex of the Rat. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics