Skip to main content

Neuronal Metabolic Basis of the Conditioning Lesion Effect

  • Conference paper
Post-Lesion Neural Plasticity
  • 94 Accesses

Abstract

The cell body response to axonal interruption is a fundamental reaction of the neuron. This activates the “growth mode” of neuronal metabolism, a genomic induction that leads to the accelerated turnover of messenger ribonucleic acid (mRNA) in association with the production of new messenger RNA and additional nucleolar DNA (Torvik and Skjorten 1974; Watson 1974; Grafstein and McQuarrie 1978; Hoffman et al. 1987). The “growth mode” gives first priority to the synthesis and axonal transport of structural and regulatory proteins that are used to assemble microtubules and microfilaments: tubulin, actin, microtubule associated proteins (MAPs), and calmodulin (Grafstein and McQuarrie 1978; McQuarrie 1983, 1988; Tetzlaff et al. 1986; Hoffman et al. 1987). Increases in transport are also seen for a trace protein, GAP-43, that appears to catalyze membrane assembly (Skene and Willard 1981 a; Jacobson et al. 1986; Perry et al. 1987). There is a concurrent reduction in metabolic activities that support the production of neurotransmitter molecules and neurofilaments (Grafstein and McQuarrie 1978; Hoffman and Lasek 1980; Tetzlaff et al. 1986; Hoffman et al. 1987; Wong and Oblinger 1987). The reduction in neurofilament transport causes a thinning of parent axons; radial regrowth does not occur until reconnection of the daughter axon with a functionally matched target organ (Cragg and Thomas 1961; Zalewski 1970; Hoffman et al. 1985, 1987; Wong and Oblinger 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Black MM, Lasek RJ (1979) Slowing of the rate of axonal regeneration during growth and maturation. Exp Neurol 63: 616–623

    Article  Google Scholar 

  • Bisby MA (1985) Enhancement of the conditioning lesion effect in rat sciatic motor axons after superimposition of conditioning and test lesions. Exp Neurol 90: 385–394

    Article  PubMed  CAS  Google Scholar 

  • Bisby MA, Pollock B (1983) Increased regeneration rate in peripheral nerve axons following double lesions: enhancement of the conditioning lesion phenomenon. J Neurobiol 14: 467–472

    Article  PubMed  CAS  Google Scholar 

  • Bondoux-Jahan M, Sebille A (1986) Electrophysiological study of conditioning lesion effect on rat sciatic nerve regeneration following either prior section or freeze. I. Intensity and time course. Brain Res 382: 39–45

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Hopkins WG (1981) Role of degenerating axon pathways in regeneration of mouse soleus motor axons. J Physiol 318: 365–373

    PubMed  CAS  Google Scholar 

  • Collins F, Lee MR (1982) A reversible developmental change in the ability of ciliary ganglion neurons to extend neurites in culture. J Neurosci 2: 424–430

    PubMed  CAS  Google Scholar 

  • Cragg BG (1970) What is the signal for chromatolysis? Brain Res 23: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Cragg BG, Thomas PK (1961) Changes in conduction velocity and fibre size proximal to peripheral nerve lesions. J Physiol (Lond) 157: 315–327

    CAS  Google Scholar 

  • Edstrom A, Sjoberg J, Kanje M (1986) The use of whole-mount preparations of nerves labelled with axonally transported radioactive proteins to study regeneration. J Neurosci Meth 16: 19–27

    Article  CAS  Google Scholar 

  • Edwards DL, Alpert RM, Grafstein B (1981) Recovery of vision in regeneration of goldfish optic axons: enhancement of axonal outgrowth by a conditioning lesion. Exp Neurol 72: 672–686

    Article  PubMed  CAS  Google Scholar 

  • Forman DS (1983) Axonal transport and nerve regeneration: A review. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven, New York, pp 75–86

    Google Scholar 

  • Forman DS, Berenberg RA (1978) Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins. Brain Res 156: 213 - 225

    Article  PubMed  CAS  Google Scholar 

  • Forman DS, McQuarrie IG, Labore FW, Wood DK, Stone LS, Braddock CH, Fuchs DA (1980) Time course of the conditioning lesion effect on axonal regeneration. Brain Res 182: 180–185

    Article  PubMed  CAS  Google Scholar 

  • Forman DS, McQuarrie IG, Grafstein B, Edwards DL (1981) Effect of a conditioning lesion on axonal regeneration and recovery of function. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 103–113

    Google Scholar 

  • Giulian D, Ruisseaux H des, Cowburn D (1980) Biosynthesis and intra-axonal transport of proteins during neuronal regeneration. J Biol Chem 255: 6494–6501

    PubMed  CAS  Google Scholar 

  • Grafstein B, Forman DS (1980) Intracellular transport in neurons. Physiol Rev 60: 1167–1283

    PubMed  CAS  Google Scholar 

  • Grafstein B, McQuarrie IG (1978) Role of the nerve cell body in axonal regeneration. In: Cotman CW (ed) Neuronal plasticity. Raven, New York, pp 155–195

    Google Scholar 

  • Grafstein B, Burmeister DW, McGuinness CM, Perry GW, Sparrow JR (1987) Role of fast axonal transport in regeneration of goldfish optic axons. In: Seil FJ, Herbert E, Carlson BM (eds) Neural regeneration. Elsevier, Amsterdam, pp 113–120 (Progress in Brain Research, vol 71 )

    Chapter  Google Scholar 

  • Griffin JW, Drachman DB, Price DL (1976) Fast axonal transport in motor nerve regeneration. J Neurobiol 7: 355–370

    Article  PubMed  CAS  Google Scholar 

  • Heacock AM, Agranoff BW (1982) Protein synthesis and transport in the regenerating goldfish visual system. Neurochem Res 7: 771–788

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PN, Lasek RJ (1980) Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Res 202: 317–333

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PN, Thompson GW, Griffin JW, Price DL (1985) Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J Cell Biol 101: 1332–1340

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci USA 84: 3472–3476

    Article  PubMed  CAS  Google Scholar 

  • Hulsebosch CE, Coggeshall RE, Perez-Polo JR (1984) Increased numbers of thoracic dorsal root axons in rats given antibodies to nerve growth factor. Science 225: 525–526

    Article  PubMed  CAS  Google Scholar 

  • Jacobson RD, Virag I, Skene JHP (1986) A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J Neurosci 6: 1843–1855

    PubMed  CAS  Google Scholar 

  • Katz F, Ellis L, Pfenninger KH (1985) Nerve growth cones isolated from fetal rat brain. III. Calcium dependent protein phosphorylation. J Neurosci 5: 1402–1411

    PubMed  CAS  Google Scholar 

  • Kristensson K, Olsson Y (1975) Retrograde transport of horseradish peroxidase in transected axons. II. Relations between rate of transfer from the site of injury to the perikaryon and the onset of chromatolysis. J Neurocytol 4: 653–661

    Article  PubMed  CAS  Google Scholar 

  • Lasek RJ, McQuarrie IG, Wujek JR (1981) The central nervous system regeneration problem: neuron and environment. In: Gorio A, Millesi H, Mingrino S (eds) Posttraumatic peripheral nerve regeneration. Raven, New York, pp 59–70

    Google Scholar 

  • Lasek RJ, Oblinger MM, Drake PF (1983) Molecular biology of neuronal geometry: expression of neurofilament genes influences axonal diameter. Cold Spring Harbor Symp Quant Biol 48: 731–744

    PubMed  CAS  Google Scholar 

  • Lasek RJ, Garner JA, Brady ST (1984) Axonal transport of the cytoplasmic matrix. J Cell Biol 99: 212s–221s

    Article  PubMed  CAS  Google Scholar 

  • Lubinska L (1952) The influence of the state of the peripheral stump on the early stages of nerve regeneration. Acta Biol Exp (Warsaw) 16: 55 - 63

    Google Scholar 

  • Lubinska L (1959) Region of transition between preserved and regenerating parts of myelinated nerve fibers. J Comp Neurol 113: 315–335

    Article  PubMed  CAS  Google Scholar 

  • Maier CE, McQuarrie IG (1987) Acceleration of slow transport in axons of regrowing newt limbs by a nerve conditioning lesion made prior to amputation. Soc Neurosci Abstr 13: 973

    Google Scholar 

  • Maier CE, McQuarrie IG, Singer M (1984) A nerve conditioning lesion accelerates limb regeneration. J Exp Zool 232: 181–186

    Article  PubMed  CAS  Google Scholar 

  • McQuarrie IG (1978) The effect of a conditioning lesion on the regeneration of motor axons. Brain Res 152: 597–602

    Article  PubMed  CAS  Google Scholar 

  • McQuarrie IG (1983) Role of the axonal cytoskeleton in the regenerating nervous system. In: Seil FJ (ed) Nerve, organ and tissue regeneration: research perspectives. Academic Press, London, pp 51–88

    Google Scholar 

  • McQuarrie IG (1984) Effect of a conditioning lesion on axonal transport during regeneration: The role of slow transport. In: Elam J, Cancalon P (eds) Axonal transport in neuronal growth and regeneration. Plenum, New York, pp 185–209 (Advances in neurochemistry, vol 6 )

    Google Scholar 

  • McQuarrie IG (1985 a) Effect of a conditioning lesion on axonal sprout formation at nodes of Ranvier. J Comp Neurol 231: 239–249

    Google Scholar 

  • McQuarrie IG (1985 b) Stages of axonal regeneration following optic nerve crush in goldfish: contrasting effects of conditioning nerve lesions and intraocular acetoxycycloheximide injections. Brain Res 333: 247–253

    Google Scholar 

  • McQuarrie IG (1986) Structural protein transport in elongating motor axons after sciatic nerve crush: effect of a conditioning lesion. Neurochem Pathol 5: 153–164

    Article  PubMed  CAS  Google Scholar 

  • McQuarrie IG (1988) Transport of cytoskeletal proteins into axonal sprouts during nerve regeneration. In: Gordon T, Stein RB (eds) The current status of peripheral nerve regeneration. Alan R Liss, New York, pp 25–34

    Google Scholar 

  • McQuarrie IG, Grafstein B (1981) Effect of a conditioning lesion on optic nerve regeneration in goldfish. Brain Res 216: 253–264

    Article  PubMed  CAS  Google Scholar 

  • McQuarrie IG, Grafstein B (1982 a) Protein synthesis and fast axonal transport in regenerating goldfish retinal ganglion cells. Brain Res 235: 213–223

    Google Scholar 

  • McQuarrie IG, Grafstein B (1982 b) Protein synthesis and axonal transport in goldfish retinal gangliom cells during regeneration accelerated by a conditioning lesion. Brain Res 251: 25–31

    Google Scholar 

  • McQuarrie IG, Grafstein B (1983) Effect of acetoxycycloheximide and dibutyryladenosine cyclic 3’,5’-monophosphate on axonal regeneration in the goldfish optic nerve. Brain Res 279: 377–381

    Article  PubMed  CAS  Google Scholar 

  • McQuarrie IG, Lasek RJ (1989) Slow transport of cytoskeletal elements from parent axons into regenerating daughter axons. J Neurosci (in press)

    Google Scholar 

  • McQuarrie IG, Grafstein B, Gershon MD (1977) Axonal regeneration in the rat sciatic nerve: effect of a conditioning lesion and of dbcAMP. Brain Res 132: 443–453

    Article  PubMed  CAS  Google Scholar 

  • McQuarrie IG, Brady ST, Lasek RJ (1986) Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat. J Neurosci 6: 1593–1605

    PubMed  CAS  Google Scholar 

  • Monaco S, Autilio-Gambetti L, Lasek RJ, Katz MJ, Gambetti P (1988) Drug-increased neurofilament transport rate: decreases in neurofilament number and axon diameter. J Neuropath Exp Neurol (in press)

    Google Scholar 

  • Oblinger MM, Lasek RJ (1984) A conditioning lesion of the peripheral axons of dorsal root ganglion cells accelerates regeneration of only their peripheral axons. J Neurosci 4: 1736–1744

    PubMed  CAS  Google Scholar 

  • Perry GW, Burmeister DW, Grafstein B (1987) Fast axonally transported proteins in regenerating goldfish optic axons. J Neurosci 7: 792–806

    PubMed  CAS  Google Scholar 

  • Redshaw JD, Bisby MA (1987) Proteins of fast axonal transport in regenerating rat sciatic sensory axons: a conditioning lesion does not amplify the characteristic response to axotomy. Exp Neurol 98: 212–221

    Article  PubMed  CAS  Google Scholar 

  • Reh TA, Redshaw JD, Bisby MA (1987) Axons of the pyramidal tract do not increase their transport of growth-associated proteins after axotomy. Mol Brain Res 2: 1–6

    Article  Google Scholar 

  • Richardson PM, Issa VM (1984) Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309: 791–793

    Article  PubMed  CAS  Google Scholar 

  • Richardson PM, Riopelle RJ (1984) Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons. J Neurosci 4: 1683–1689

    PubMed  CAS  Google Scholar 

  • Richardson PM, Verge VMK (1986) The induction of a regenerative propensity in sensory neurons following peripheral axonal injury. J Neurocytol 15: 585–594

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg A, Lovinger D, Steward O (1985) Selective increase in phosphorylation of a 47 kDa protein ( F1) directly related to long-term potentiation. Behav Neural Biol 43: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Sebille A, Bondoux-Jahan M (1980) Effects of electric stimulation and previous nerve injury on motor function recovery in rats. Brain Res 193: 562–565

    Article  PubMed  CAS  Google Scholar 

  • Singer PA, Mehler S, Fernandez HL (1982) Blockade of retrograde axonal transport delays the onset of metabolic and morphologic changes induced by axotomy. J Neurosci 2: 1299–1306

    PubMed  CAS  Google Scholar 

  • Skene JHP, Willard M (1981 a) Changes in axonally transported proteins during regeneration in toad retinal ganglion cells. J Cell Biol 89: 86–95

    Google Scholar 

  • Skene JHP, Willard M (1981 b) Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J Cell Biol 89: 96–103

    Google Scholar 

  • Sparrow JR, Grafstein B (1983) Prior collateral sprouting enhances axonal regeneration. Brain Res 269: 133–136

    Article  PubMed  CAS  Google Scholar 

  • Stoeckel K, Thoenen H (1975) Retrograde axonal transport of nerve growth factor: specificity and biological importance. Brain Res 85: 337–341

    Article  PubMed  CAS  Google Scholar 

  • Tetzlaff W, Bisby MA, Kreutzberg GW (1986) Protein changes in the axotomized facial and hypoglossal nucleus of the rat. Soc Neurosci Abstr 12: 277

    Google Scholar 

  • Torvik A, Skjorten F (1974) The effect of actinomycin D upon normal neurons and retrograde nerve cell reaction. J Neurocytol 3: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Watson WE (1968) Observations on the nucleolar and total cell body nucleic acid of injured nerve cells. J Physiol (Lond) 196: 655–676

    CAS  Google Scholar 

  • Watson WE (1974) The binding of actinomycin D to the nuclei of axotomized neurones. Brain Res 65: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Oblinger MM (1987) Changes in neurofilament gene expression occur after axotomy of dorsal root ganglion neurons: an in situ hybridization study. Metabol Brain Dis 2: 291–303

    Article  CAS  Google Scholar 

  • Zalewski AA (1970) Effects of reinnervation on denervated skeletal muscle by axons of motor, sensory, and sympathetic neurons. Am J Physiol 219: 1675–1679

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McQuarrie, I.G. (1988). Neuronal Metabolic Basis of the Conditioning Lesion Effect. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics