Skip to main content

Regulation of Axonal Growth

  • Conference paper
Post-Lesion Neural Plasticity
  • 89 Accesses

Abstract

A major manifestation of neural plasticity is the ability of adult nerve cells to regulate the growth of their axons. For example, peripheral nerve injury can be followed by the regeneration of the severed axons and the sprouting of intact axons. These two modes of growth may result in new synapse formation and therefore bear functional significance. Normally, severed axons regenerate into denervated tissues. Intact axons, on the other hand, can sprout into either deneravted or innervated target tissues. For example, after cutting some of the axons innervating a muscle, the remaining intact axons grow new processes that innervate denervated muscle fibers (Edds 1953; Brown et al. 1981). Sprouting and synapse formation in normally innervated muscles may take place after denervating muscles on the contralateral side of the body (e.g., Rotshenker 1979; Rotshenker and Tal 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown MC, Holland RL, Hopkins WG (1981) Motor nerve sprouting. Annu Rev Neurosci 4: 17–42

    Article  PubMed  CAS  Google Scholar 

  • Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci USA 74: 4516–4518

    Article  PubMed  CAS  Google Scholar 

  • Chiquet M, Acklin SE (1986) Attachment to con A or extracellular matrix initiates rapid sprouting by culture leech neurons. Proc Natl Acad Sci USA 83: 6188–6192

    Article  PubMed  CAS  Google Scholar 

  • Edds MV (1953) Collateral nerve regeneration. Q Rev Biol 28: 260–276

    Article  PubMed  Google Scholar 

  • Elizalde AM, Huerta M, Stefani E (1983) Selective reinnervation of twitch and tonic muscle fibers of the frog. J Physiol 340: 513–524

    PubMed  CAS  Google Scholar 

  • Herrera AA, Scott DR (1985) Motor axon sprouting in frog sartorius muscles is not altered by contralateral axotomy. J Neurocytol 14: 145–156

    Article  PubMed  CAS  Google Scholar 

  • Kuffler DP (1986) Isolated satellite cells of peripheral nerve direct the growth of regenerating frog axons. J Comp Neurol 249: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Levay S, Weisel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191: 1–51

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1982) Developmental neurobiology and the natural history of nerve growth factor. Annu Rev Neurosci 5: 341–362

    Article  PubMed  CAS  Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principle features of perikaryon responses to axon injury. Int Rev Neurobiol 14: 49–124

    Article  PubMed  CAS  Google Scholar 

  • Lieberman Ar (1974) Some factors affecting retrograde neuronal responses to axonal lesions. In: Bellairs R, Gray EG (eds) Essays on the nervous system. Clarendon, Oxford, pp 71–105

    Google Scholar 

  • Pecot-Dechavassine M (1986) Increase in polyneuronal innervation in frog muscle after muscle injury. J Physiol 371: 167–177

    PubMed  CAS  Google Scholar 

  • Riley DA, Fahlman CF (1985) Colchicine-induced sprouting of endplates on fast and slow muscle fibers in rat extensor digitorum longus, soleus and tibialis anterior muscles. Brain Res 329: 83–95

    Article  PubMed  CAS  Google Scholar 

  • Ring G, Reichert F, Rotshenker S (1983) Sprouting in intact sartorius muscles of the frog following contralateral axotomy. Brain Res 60: 313–316

    Article  Google Scholar 

  • Rotshenker S (1979) Synapse formation in intact innervated cutaneous-pectoris muscles of the frog following denervation of opposite muscle. J Physiol 292: 535–547

    PubMed  CAS  Google Scholar 

  • Rotshenker S (1981) Sprouting and synapse formation by motor axons separated from their cell bodies. Brain Res 223: 141–145

    Article  PubMed  CAS  Google Scholar 

  • Rotshenker S (1982) Transneuronal and peripheral mechanisms for the induction of motor neuron sprouting. J Neurosci 2: 1359–1368

    PubMed  CAS  Google Scholar 

  • Rotshenker S, Reichert F (1980) Motor axon sprouting and site of synapse of formation in intact innervated skeletal muscle of the frog. J Comp Neurol 193: 413–422

    Article  PubMed  CAS  Google Scholar 

  • Rotshenker S, Tal M (1985) The transneuronal induction of sprouting and synapse formation in intact mouse muscle. J Physiol 360: 387–396

    PubMed  CAS  Google Scholar 

  • Schonenberger N, Escher G, Loos H Van Der (1983) Axon number in oculomotor nerves in Xenopus: removal of eye primordium affects both sides. Neurosci Lett 41: 238–245

    Article  Google Scholar 

  • Steinbach HJ (1981) Neuromuscular junctions and a-bungarotoxin binding sites in denervated and contralateral cat skeletal muscle. J Physiol 313: 513–528

    PubMed  CAS  Google Scholar 

  • Tal M, Rotshenker S (1983) Recycling of synaptic vesicles in motor nerve endings separated from their target muscle fibers. Brain Res 270: 131–133

    Article  PubMed  CAS  Google Scholar 

  • Tal M, Rotshenker S (1984) Sprouting and synapse formation produced by carbocaine. J Neurosci 4: 458–463

    PubMed  CAS  Google Scholar 

  • Tsukahara N, Murakami F (1986) Correlative morphological and physiological studies on sprouting of excitatory and inhibitory synapses of red nucleus neurons. In: Gilad FM, Gorio A, Kreutzberg GW (eds) Processes of recovery from neuronal trauma. Springer, Berlin Heidelberg New York, p 109

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rotshenker, S. (1988). Regulation of Axonal Growth. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics