The Sense of Sight

  • O. -J. Grüsser
  • U. Grüsser-Cornehls


The philosopher and physicist J.F. Fries of Jena, one of the few Kantians in the age of Romanticism, in 1818 published a “Handbook of Psychological Anthropology” in which he wrote: “Where the knowledge of Nature is concerned, humans are instructed by their eyes. Vision alone leads us beyond the surface of the earth, out to the stars, and on earth itself this sense provides us with most of our perceptions of things, from the greatest distances and with the greatest ease of comprehension … The seeing person apprehends all the life of nature about him by light and color; the eye is our world sense (Weltsinn).” In this chapter we consider the physiological basis of this “world sense”.


Receptive Field Color Vision Lateral Geniculate Nucleus Visual Pigment Horizontal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Textbooks and Handbooks

  1. 1.
    Baker, R., Berthoz, A. (eds.): Control of gaze by brain stem neurons. Amsterdam-New York: Elsevier (1977)Google Scholar
  2. 2.
    Bing, R., Brückner, R.: Gehirn und Auge. Grundriß der Ophthalmo-Neurologie, 3rd Ed. Basel: Schwabe 1954Google Scholar
  3. 3.
    Cajal, R.S.: Die Retina der Wirbeltiere. Wiesbaden: Bergmann (1894)Google Scholar
  4. 4.
    Dartnall, H.J.A. (ed.): Photochemistry of vision. Handbook of Sensory Physiology, Bd. VII/1, Berlin-Heidelberg-New York: Springer 1972Google Scholar
  5. 5.
    Davson, V.: The Eye. 4 vols. London: Academic Press 1962Google Scholar
  6. 6.
    Dichgans, J., Bizzi, E. (eds.): Cerebral control of eye movements and motion perception. Basel: Karger 1972Google Scholar
  7. 7.
    Drujan, B.D.S., Laufer, M. (eds.): The S-potentials, New York, Liss (1982)Google Scholar
  8. 8.
    Fuortes, M.G.F. (eds.): Physiology of photoreceptor organs. Handbook of Sensory Physiology, Vol. VII/2. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  9. 9.
    Graham, C.H. (ed.): Vision and visual perception. New York-London. Sidney: J.Wiley 1965Google Scholar
  10. 10.
    Granit, R.: Receptors and sensory perception. New Haven: Yale University Press 1955Google Scholar
  11. 11.
    Grüsser, O.-J., Klinke, R. (eds.): Zeichenerkennung durch biologische und technische Systeme. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  12. 12.
    Helmholtz, H. von: Handbuch der Physiologischen Optik, 2nd Ed. Hamburg, Leipzig: L. Voss 1896Google Scholar
  13. 13.
    Hering, E.: Grundzüge der Lehre vom Lichtsinn. Berlin: Springer 1920Google Scholar
  14. 14.
    Hofmann, F.B.: Die Lehre vom Raumsinn des Auges (1920). Berlin-Heidelberg-New York: Springer 1970 (Reprint)Google Scholar
  15. 15.
    Hyvärinen, J.: The parietal cortex of monkey and man. Berlin-Heidelberg-New York: Springer 1982CrossRefGoogle Scholar
  16. 16.
    Jameson, D., Hurvich, L.M. (eds.): Visual Psychophysics. Handbook of Sensory Physiology Vol. VII/4. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  17. 17.
    Jung, R. (ed.): Central processing of visual information. A: Integrative function and comparative data. Handbook of Sensory Physiology, Vol. VII/3A. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  18. 18.
    Jung, R. (ed.): Central processing of visual information. B. Visual centers in the brain. Handbook of Sensory Physiology, Vol VII/3B. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  19. 19.
    Kommerell, G. (ed.): Augenbewegungsstörungen. Neurophysiologie und Klinik. München: J.F. Bergmann (1978)Google Scholar
  20. 20.
    Landolt, E.: Die Untersuchung der Refraction und der Akkommodation. In: Graefe-Saemisch’s Handbuch der gesamten Augenheilkunde, 3rd Ed., Untersuchungsmethoden, Vol. 1. Berlin: Springer 1930Google Scholar
  21. 21.
    Lennerstrand, G., Bach-Y-Rita, P.: Basic mechanisms of ocular motility and their clinical implications. Oxford: Pergamon Press, 1975Google Scholar
  22. 22.
    Linksz, A.: Physiology of the eye. Vol. I: Optics. Vol. II: Vision. New York: Grüner und Stratton 1950–1952Google Scholar
  23. 23.
    Mütze, K., Nehrung, B., Reutter, J.: Brillenglasbestimmung. Zürich: Verlag für Augenheilkunde und Optik 1972Google Scholar
  24. 24.
    Polyak, S.: The vertebrate visual system. Chicago: University of Chicago Press 1957Google Scholar
  25. 25.
    Schober, H.: Das Sehen, Vol. 2, 2nd Ed. Leipzig-Fachbuchverlag 1958Google Scholar
  26. 26.
    Siebeck, R.: Optik des menschlichen Auges. Berlin-Göttingen-Heidelberg: Springer 1960Google Scholar
  27. 27.
    Spiegel, I.M. (ed.): Readings in the study of visually perceived movement. New York: Harper and Row 1965Google Scholar
  28. 28.
    Stöhr, M., Dichgans, J., Diener, H.C., Buettner, U.W.: Evozierte Potentiale. Berlin-Heidelberg-New York, Springer 1982Google Scholar
  29. 29.
    Walls, G.L.: The vertebrate eye and its adaptive radiation. New York, London: Hafner 1963Google Scholar
  30. 30.
    Walsh, F.B., Hoyt, W.F.: Clinical neuroophthalmology, 3rd Ed. Baltimore: William and Wilkins 1969Google Scholar
  31. 31.
    Wright, W.D.: The measurement of colour, 3rd Ed. London: Hilger und Watts 1964Google Scholar
  32. 32.
    Yarbus, A.L.: Eye movements and vision. New York: Plenum Press 1967Google Scholar
  33. 33.
    Zrenner, E.: Neurophysiological aspects of colour vision in primates. Berlin-Heidelberg-New York: Springer 1983Google Scholar

Original Papers and Reviews

  1. 34.
    Altman, J.: New visions in photoreception. Nature 313, 264–265 (1985)CrossRefGoogle Scholar
  2. 35.
    Baumgartner, G., Hakas, P.: Die Neurophysiologie des simultanen Helligkeitskontrastes. Pflüg. Arch. ges. Physiol. 274 489 (1962)CrossRefGoogle Scholar
  3. 36.
    Baylor, D.A., Fuortes, M.G.F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77 (1970)Google Scholar
  4. 37.
    Bill, A.: Uveoscleral drainage of aqueous humour in human eyes. Exp. Eye Res, 12, 275 (1971)PubMedCrossRefGoogle Scholar
  5. 38.
    Boycott, B.B., Wässle, H.: The morphological types of ganglion cells of the domestic cats’ retina. J. Physiol. (Lond.), 240, 397 (1974)Google Scholar
  6. 39.
    Collewijn, H.M., Curio, G., Grüsser, O.-J.: Spatially selective visual attention and generation of eye pursuit movement. Experiments with Sigma movement. Human Neurobiology 1, 129 (1982)PubMedGoogle Scholar
  7. 40.
    Desimone, R., Albright, T.D., Gross, C., Bruce, C.: Stimulus selective properties of inferior temporal neurons in the macaque. J. Neurosciences 4, 2051 (1984)Google Scholar
  8. 41.
    Die, G. van, Collewijn, H.: Optokinetic nystagmus in man. Role of central and peripheral retina and occurrence of asymmetries. Human Neurobiol. 1, 111 (1982)Google Scholar
  9. 42.
    Essen, D.C. van: Visual areas of the mammalian cerebral cortex. Ann. Rev. Neurosciences 2, 227 (1979)CrossRefGoogle Scholar
  10. 43.
    Essen, D.C. van, Mounsell, J.H.R., Bixby, J.L.: The middle temporal visual area in the macaque: myeloarchitecture connections, functional properties and topographic organization. J. Comp. Neurol. 199, 293 (1981)PubMedCrossRefGoogle Scholar
  11. 44.
    Essen, D.C. van, Newsome, W.T., Bixby, J.L.: The pattern of intrahemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J. Neuroscience 2, 265 (1982)Google Scholar
  12. 45.
    Essen, D.C. van, Zeki, S.M.: The topographic organization of Rhesus monkey prestriate cortex. J. Physiol. 277, 193 (1978)PubMedGoogle Scholar
  13. 46.
    Fesenko, E.E., Kolesnikov, S.S., Lybarsky, A.L.: Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310 (1985)PubMedCrossRefGoogle Scholar
  14. 47.
    Grüsser, O.-J.: Grundlagen der neuronalen Informationsverarbeitung in den Sinnesorganen und im Gehirn. Informatik-Fachberichte Bd. 16, 234. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  15. 48.
    Grüsser, O.-J.: Multimodal structure of the extrapersonal space. In: Hein, A., Jeannerod, M.: Spatially oriented behaviour. New York-Berlin-Heidelberg-Tokyo: Springer 1982, p. 328Google Scholar
  16. 49.
    Grüsser, O.-J.: Die funktionelle Organisation der Säugetiernetzhaut — physiologische und pathophysiologische Aspekte. Fortschr. Ophthalmol. 80, 502 (1983)PubMedGoogle Scholar
  17. 50.
    Grüsser, O.-J.: Face recognition within the region of neuro-biology and beyond it. Human Neurobiol. 3, 183 (1984)Google Scholar
  18. 51.
    Grüsser, O.-J., Grüsser-Cornehls, U.: Periodische Aktivierungsphasen visueller Neurone nach kurzen Lichtreizen verschiedener Dauer. Pflüg. Arch ges. Physiol. 275, 292 (1962)CrossRefGoogle Scholar
  19. 52.
    Grüsser, O.-J., Grüsser-Cornehls, U.: Neurophysiologie des Bewegungssehens. Bewegungsempfindliche und richtungsspezifische Neurone im visuellen System. Ergebn. Physiol. 61, 178 (1969)PubMedGoogle Scholar
  20. 53.
    Hagins, W.A., Penn, R.D., Yoshikami, S.: Dark current and photocurrent in retinal rods. Biophys. J. 10, 380 (1970)PubMedCrossRefGoogle Scholar
  21. 53a.
    Henn, V., Büttner-Ennever, J.A., Hepp, K. The primate oculomotor system I. and II. Human Neurobiol. 1, 77 and 87 (1982)Google Scholar
  22. 54.
    Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215 (1968)Google Scholar
  23. 55.
    Hubel, D.H., Wiesel, T.N.: Cell sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature 225, 41 (1970)PubMedCrossRefGoogle Scholar
  24. 56.
    Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque visual cortex. Proc. Roy. Soc. (Lond.) B 198, 1 (1977)CrossRefGoogle Scholar
  25. 56a.
    Lamb, T.D. Transduction in vertebrate photoreceptors: the roles of cyclic GMP and calcium. Trends in Neurosciences 9, 224 (1986)CrossRefGoogle Scholar
  26. 57.
    Livingston, M.S., Hubel, D.H.: Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309 (1984)Google Scholar
  27. 58.
    Lynch, J.C.: The functional organization of posterior parietal association cortex. Behavior and Brain Science 3, 485 (1980)CrossRefGoogle Scholar
  28. 59.
    Lynch, J.C., Mountcastle, V.B., Talbot, W.H., Yin, T.C.T.: Parietal lobe mechanisms for directed visual attention. J. Neu-rophysiol. 40, 362 (1977)Google Scholar
  29. 59a.
    Perett, D.I., Rolls, E.T., Kaan, W. Visual neurons responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329 (1982)CrossRefGoogle Scholar
  30. 60.
    Schiller, P.H.: The role of the monkey superior colliculi in eye movement and vision. Invest. Ophthal. 11, 451 (1972)PubMedGoogle Scholar
  31. 61.
    Tomita, T.: Electrical activity of vertebrate photoreceptors. Quart. Rev. Biophys. 3, 179 (1970)CrossRefGoogle Scholar
  32. 62.
    Wild, H.M., Butler, S.R., Carden Kulikowski, J.J.: Primate cortical area V4 important for colour constancy but not wavelength discrimination. Nature 313, 133 (1985)CrossRefGoogle Scholar
  33. 63.
    Wurtz, R.H., Goldberg, M.E.: The primate superior collicu-lus and the shift of visual attention. Invest. Ophthal. 11, 441 (1972)PubMedGoogle Scholar
  34. 64.
    Zeki, S.M.: Functional specialization in the visual cortex of Rhesus monkey. Nature 274, 423 (1978)PubMedCrossRefGoogle Scholar
  35. 65.
    Zeki, S.M.: Uniformity and diversity of structure and function in Rhesus monkey prestriate visual cortex. J. Physiol. (Lond.) 277, 273 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • O. -J. Grüsser
  • U. Grüsser-Cornehls

There are no affiliations available

Personalised recommendations