Advertisement

Pathophysiologie dementieller Erkrankungen

  • S. Hoyer

Zusammenfassung

Das nur etwa 2–3% des normalen Körpergewichts eines gesunden Erwachsenen ausmachende Gehirn benötigt rund 15% der zirkulierenden Gesamtblutmenge, etwa 15% des vom Körper aufgenommenen Sauerstoffs und rund 25% der Gesamtkohlenhydrataufnahme eines normalgewichtigen Erwachsenen, um seine Funktion und Struktur aufrecht erhalten zu können. Dabei wird unter physiologischen Bedingungen ausschließlich Glukose oxydiert, um biologisch verfügbare Energie zu gewinnen (GIBBS et al. 1942; COHEN et al. 1964; GOTTSTEIN et al. 1963; HOYER 1970). Der Glukosetransfer aus dem arteriellen Blut ins Gehirn durch die Blut-Hirn-Schranke erfolgt mit Hilfe eines besonderen Transportsystems, das aller Wahrscheinlichkeit nach insulinabhängig ist (BACHELARD 1971; OLDENDORF 1971; BACHELARD et al. 1973; PARDRIGE U. OLDENDORF 1977; NEMOTO et al. 1978; HERTZ et al. 1981; KAHN 1985). Lediglich 5% der vom Gehirn aufgenommenen Glukosemenge gelangt physiologischerweise mittels Diffusion ins Gehirn. Im Zytoplasma von Nerven- und Gliazellen wird Glukose glykolytisch bis zum Pyruvat abgebaut. Der glykolytische Flux wird reguliert durch das allosterische Enzym Phosphofruktokinase, das in einer Art konzertierten Aktion mit den Enzymen Hexokinase und Pyruvatkinase zusammenarbeitet (NEWSHOLME U. START 1973; SIESJÖ 1978).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8: 51–57PubMedCrossRefGoogle Scholar
  2. Bachelard HS (1971) Specifity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro. J Neurochem 13: 213–222CrossRefGoogle Scholar
  3. Bachelard HS, Daniel PM, Love ER, Pratt OE (1973) The transport of glucose into the brain of the rat in vivo. Proc R Soc Biol 183: 71–82CrossRefGoogle Scholar
  4. Barkulis SS, Geiger A, Kawikata Y, Aguilar V (1960) A study of the incorporation of 14C derived from glucose into free amino acids of the brain cortex. J Neurochem 5: 339–348PubMedCrossRefGoogle Scholar
  5. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374PubMedCrossRefGoogle Scholar
  6. Branston NM, Strong AJ, Symon L (1977) Extracellular potassium activity, evoked potential and tissue blood flow: Relationships during progressive ischaemia in baboon cerebral cortex. J Neurol Sci 32: 305–321Google Scholar
  7. Branston NM, Strong AJ, Symon L (1982) Kinetics of resolution of transient increases in extracellular potassium activity: Relationships to regional blood flow in primate cerebral cortex. Neurol Res 4: 1–19Google Scholar
  8. Brun A, Englund E (1986) A white matter disorder in dementia of the Alzheimer type: A pathoanatomical study. Ann Neurol 19: 253–262Google Scholar
  9. Butcher SP, Sandberg M, Hagberg H, Hamberger A (1987) Cellular origins of endogenous amino acids released into the extracellular fluid of the rat striatum during severe insulin-induced hypoglycemia. J Neurochem 48: 722–728PubMedCrossRefGoogle Scholar
  10. Chase TN, Foster NL, Defio P, DiChiro G, Brooks R, Patronas NJ (1983) Alzheimer’s disease: Local cerebral metabolism studies using the 18F-fluorodeoxyglucose-positron emission tomography technique. In: Samuel D, Algeri S, Gershon S, Grimm VE, Toffano G (eds) Aging of the brain. Raven, New York, pp 143–154Google Scholar
  11. Chu DTW, Stumpo DJ, Blackshear PJ, Granner DL (1987) The inhibition of phosphoenolpyruvate carboxykinase (guanosine triphosphate) gene expression by insulin is not mediated by protein kinase C. Mol Endocrinol 1: 53 - 59PubMedCrossRefGoogle Scholar
  12. Cohen PJ, Wollman H, Alexander SC, Chase PE, Behar MG (1964) Cerebral carbohydrate metabolism in man during halothane anesthesia. Effects of paC02 on some aspects of carbohydrate utilization. Anesthesiology 25: 185–191PubMedCrossRefGoogle Scholar
  13. Cohen PJ, Alexander SC, Smith TC, Reivich M, Wollman H (1967) Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol 23: 183–189PubMedGoogle Scholar
  14. Cutler NR, Haxby JV, Duara R et al. (1985) Clinical history, brain metabolism, and neuropsychological function in Alzheimer’s disease. Ann Neurol 18: 298–309PubMedCrossRefGoogle Scholar
  15. Davies KJA, Goldberg AL (1987) Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes. J Biol Chem 262: 8220–8226PubMedGoogle Scholar
  16. Denton RM, McCormack JG, Thomas AP (1986) Hormonal regulation of intramitochondrial metabolism. Biol Chem Hoppe-Seyler 367 (Suppl): 64Google Scholar
  17. Deshpande JK, Siesjö BK, Wieloch T (1987) Calcium accumulation and neuronal damage in rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 7: 89–95PubMedCrossRefGoogle Scholar
  18. Dienel GA (1984) Regional accumulation of calcium in postischemic rat brain. J Neurochem 43: 913–925PubMedCrossRefGoogle Scholar
  19. Drejer J, Benveniste H, Diemer NH, Schousboe A (1985) Cellular origin of ischemia-inducedGoogle Scholar
  20. glutamate release from brain tissue in vivo and in vitro. J Neurochem 45: 145–151Google Scholar
  21. Dykens JA, Stern A, Trenkner E (1987) Mechanisms of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 49: 1222–1228PubMedCrossRefGoogle Scholar
  22. Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, DiChiro G (1984) Cortical abnormalities in Alzheimer’s disease. Ann Neurol 16: 649–654PubMedCrossRefGoogle Scholar
  23. Gammeltoft S, Kowalski A, Fehlmann M, Obberghen E van (1984) Insulin receptors in rat brain: Insulin stimulates phosphorylation of its reeeptor-ß-subunit. FEBS Letters 172: 87–90Google Scholar
  24. Geiger A, Kawikata Y, Barkulis SS (1960) Major pathways of glucose utilization in the brain in brain perfusion experiments in vivo and in situ. J Neurochem 5: 323–338PubMedCrossRefGoogle Scholar
  25. Gibbs EL, Lennox WG, Nims LF, Gibbs FA (1942) Arterial and cerebral venous blood. Arterial- venous differences in man. J Biol Chem 144: 325–332Google Scholar
  26. Gibson GE, Jope R, Blass JP (1975) Reduced synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem J 148: 17–29PubMedGoogle Scholar
  27. Gottstein U, Bernsmeier A, Sedlmeyer I (1963) Der Kohlenhydratstoffwechsel des menschlichen Gehirns. I. Untersuchungen mit substratspezifischen enzymatischen Methoden bei normaler Hirndurchblutung. Klin Wochenschr 41: 943–948Google Scholar
  28. Hanwehr R von, Smith ML, Siesjö BK (1986) Extra- and intracellular pH during near-complete forebrain ischemia in the rat. J Neurochem 46: 331–339CrossRefGoogle Scholar
  29. Harris R, Symon L, Branston NM, Bayhan M (1981) Changes in extracellular calcium activity in cerebral ischemia. J Cereb Blood Flow Metab 1: 203–209PubMedCrossRefGoogle Scholar
  30. Haxby JV, Duara R, Grady CL, Cutler NR, Rapoport SI (1985) Relations between neuropsychological and cerebral asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 5: 193–200PubMedCrossRefGoogle Scholar
  31. Hertz MM, Paulson OB, Barry DI, Christiansen JS, Svendsen PA (1981) Insulin increases glucose transfer across the blood-brain barrier. J Clin Invest 67: 597–604PubMedCrossRefGoogle Scholar
  32. Hoyer S (1970) Der Aminosäurestoffwechsel des normalen menschlichen Gehirns. Klin Wochenschr 4: 1239–1243CrossRefGoogle Scholar
  33. Hoyer S (1978) Blood flow and oxidative metabolism of the brain in different phases of dementia. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer’s disease: Senile dementia and related disorders. Raven, New York, pp 219–226Google Scholar
  34. Hoyer S (1982) The abnormally aged brain. Its blood flow and oxidative metabolism. A review - Part II. Arch Gerontol Geriatr 1: 195–207PubMedCrossRefGoogle Scholar
  35. Hoyer S (1986a) General overview on the dementias. In: Bes A, Cahn R, Hoyer S, Marc-Vergnes JP, Wisniewski HM (eds) Senil dementias: Early detection. Libbey, London, pp 5–21Google Scholar
  36. Hoyer S (1988) Metabolism and circulation in normal and abnormal aging processes of the brain. What are the mechanisms of neuronal degeneration? In: Henderson AS, Henderson JH (eds) Dahlem Workshop Report LS 43. Etiology of dementia of Alzheimer’s type. Wiley, Chichester (in press)Google Scholar
  37. Hoyer S, Krier C (1986) Ischemia and the aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol Aging 7: 23–29Google Scholar
  38. Hoyer S, Oesterreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J Neurol 235: 143–148PubMedCrossRefGoogle Scholar
  39. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529–531PubMedCrossRefGoogle Scholar
  40. Kahn CR (1985) The molecular mechanism of insulin action. Ann Rev Med 36: 429–451PubMedCrossRefGoogle Scholar
  41. Kang J, Lemaire HG, Unterbeck A et al. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  42. Kraepelin E (1910) Psychiatrie. Ein Lehrbuch für Studierende und Ärzte, 8. Aufl. Bd II: Klinische Psychiatrie, Teil I. Barth, Leipzig, S 620 Kyriakis JM, Hausman RE, Peterson SW (1987) Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons. Proc Natl Acad Sci USA 84: 7463–7467Google Scholar
  43. Nemoto EM, Stezoski SW, MacMurdo D (1978) Glucose transport across the rat blood-brain bar¬rier during anesthesia. Anesthesiology 49: 170–176PubMedCrossRefGoogle Scholar
  44. Newsholme EA, Start C (1973) Regulation in metabolism. Wiley, Chichester Norberg K, Siesjö BK (1976) Oxidative metabolism of the cerebral cortex of the rat in severe insulin-induced hypoglycaemia. J Neurochem 26: 345–352Google Scholar
  45. Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am J Physiol 221: 1629–1639PubMedGoogle Scholar
  46. Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood-brain barrier. J Neurochem 28: 5–12PubMedCrossRefGoogle Scholar
  47. Perry EK, Perry RH, Tomlinson BE, Blessed G, Gibson PH (1980) Coenzyme A acetylating enzymes in Alzheimer’s disease: Possible cholinergic „compartment“ of pyruvate dehydrogenase. Neurosci Lett 18: 105–110Google Scholar
  48. Polinsky RJ, Noble H, DiChiro G, Nee LE, Feldman RG, Brown RT (1987) Dominantly inherited Alzheimer’s disease: Cerebral glucose metabolism. J Neurol Neurosurg Psychiatry 50: 752–757Google Scholar
  49. Procter AW, Palmer AM, Francis PT et al. (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J Neurochem 50: 790–802PubMedCrossRefGoogle Scholar
  50. Roth M (1978) Diagnosis of senile and related forms of dementia. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer’s disease: Senile dementia and related disorders. Raven, New York, pp 71–85Google Scholar
  51. Roth M (1986) The association of clinical and neurological findings and its bearing on the classification and aetiology of Alzheimer’s disease. Br Med Bull 42: 42–50PubMedGoogle Scholar
  52. Sacks W (1957) Cerebral metabolism of isotopic glucose in normal human subjects. J Appl Physiol 10: 37–44PubMedGoogle Scholar
  53. Sacks W (1965) Cerebral metabolism of doubly labeled glucose in humans in vivo. J Appl Physiol 20: 117–130PubMedGoogle Scholar
  54. Siesjö BK (1978) Brain energy metabolism. Wiley, Chichester Siesjö BK, Wieloch T (1985) Cerebral metabolism in ischaemia: Neurochemical basis for therapy. Br J Anaesth 57: 47–62Google Scholar
  55. Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer’s disease: Adenine nucleotide content and production of 14CO2 from (U-14C) glucose in vitro in human neocortex. J Neurochem 41: 1329–1334PubMedCrossRefGoogle Scholar
  56. Sims NR, Blass JP, Murphy C, Bowen DM, Neary D (1987b) Phosphofructokinase activity in the brain in Alzheimer’s disease. Ann Neurol 21: 509–510PubMedCrossRefGoogle Scholar
  57. Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13: 72–78PubMedCrossRefGoogle Scholar
  58. Sumpter PQ, Mann DMA, Davies CA, Yates PO, Snowdon JS, Neary D (1986) An ultrastructural analysis of the effects of accumulation of neurofibrillary tangle in pyramidal neurons of the cerebral cortex in Alzheimer’s disease. Neuropathol Appl Neurobiol 12: 305–319PubMedCrossRefGoogle Scholar
  59. Symon L, Branston NM, Chikovani O (1979) Ischemic brain edema following middle cerebral artery occlusion in baboons: Relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke 10: 184–191PubMedCrossRefGoogle Scholar
  60. Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Figdor R, Allen AM, Mendelsohn FAO (1987) Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121: 1562–1570PubMedCrossRefGoogle Scholar
  61. Westerberg E, Deshpande JK, Wieloch T (1987) Regional differences in arachidonic acid release in rat hippocampal CA1 and CA3 regions during cerebral ischemia. J Cereb Blood Flow Metab 7: 189–192PubMedCrossRefGoogle Scholar
  62. Wong KL, Tyce GM (1983) Glucose and amino acid metabolism in rat brain during sustained hypoglycemia. Neurochem Res 8: 401–415PubMedCrossRefGoogle Scholar
  63. Young WS (1986) Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 8: 93–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • S. Hoyer

There are no affiliations available

Personalised recommendations