Skip to main content

Mechanism of Acupuncture Analgesia Based on Animal Experiments

  • Chapter
Scientific Bases of Acupuncture

Abstract

Analgesia in response to stimulation of an acupuncture point is produced by two different mechanisms. One is the activation of some of the enodgenous, multiple pain inhibitory systems, and the other is the improvement of the reduced circulation in the painful regions in which possibly the pain causing substance has accumulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott FV, Melzack R (1978) Analgesia produced by stimulation of limbic structures and its relation to epileptiform after-discharges. Exp Neurol 62: 730–734

    Article  Google Scholar 

  2. Akaike A, Shibata T, Satoh M, Takagi H (1978) Analgesia induced by microinjection of morphine into, and electrical stimulation of the nucleus reticularis paragigantocellularis of rat medulla oblongata. Neuropharmacology 17: 775–778

    Article  PubMed  CAS  Google Scholar 

  3. Andersson SA, Ericson T, Holmgren E, Lindqvist G ( 1973 Electro-acupuncture effect on pain threshold measured with electrical stimulation of teeth. Brain Res 63: 393–396

    Article  PubMed  CAS  Google Scholar 

  4. Andersson SA, Holmgren E (1975) On acupuncture analgesia and mechanism of pain. Am J Chin Med 3: 331–334

    Google Scholar 

  5. Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain: II. The brainstem. Brain Res 129: 1–12

    Article  CAS  Google Scholar 

  6. Balagura S, Ralph T (1973) The analgesic effect of electrical stimulation of the diencephalon and mesencephalon. Brain Res 60: 369–379

    Article  PubMed  CAS  Google Scholar 

  7. Bloom F, Battenberg E, Rossier J, Ling N, Guillemin R (1978) Neurons containing β-endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc Natl Acad Sci (USA) 75: 1591–1595

    Article  PubMed  CAS  Google Scholar 

  8. Brain SD, Williams TJ, Tippins JR, Morris HR, Maclntyre I (1985) Calcitonin generelated peptide is a potent vasodilator. Nature 313: 54–56

    Article  PubMed  CAS  Google Scholar 

  9. Breglio V, Anderson DC, Merrill HK (1970) Alteration in footshock threshold by low-level septal brain stimulation. Physiol Behav 5: 715–719

    Article  PubMed  CAS  Google Scholar 

  10. Cheng R, Pomeranz B, Yu G (1979) Dexamethasone partially reduces and saline-treatment abolished alectroacupuncture analgesia: these findings implicate pituitary endorphins. Life Sci 24: 1481–1486

    Article  PubMed  CAS  Google Scholar 

  11. Cheng R, Pomeranz B (1979) Electroacupuncture analgesia could be mediated by at least two pain-relieving mechanisms: endorphin and non-endorphin systems. Life Sci 25: 1957–1962

    Article  PubMed  CAS  Google Scholar 

  12. Chiang CY, Chang CT (1973) Peripheral afferent pathway for acupuncture analgesia. Sci Sin 16: 210–217

    Google Scholar 

  13. Cox VC, Valenstein ES (1965) Attenuation of aversive properties of peripheral shock by hypothalamic stimulation. Science 149: 323–325

    Article  PubMed  CAS  Google Scholar 

  14. Eliasson S, Folkow B, Lindgren P, Uvnas B (1951) Activation of sympathetic vasodilator nerves to the skeletal muscle in the cat by hypothalamic stimulation. Acta Physiol Scand 23: 333–351

    Article  PubMed  CAS  Google Scholar 

  15. Fu TC, Halenda SP, Dewey WL (1980) The effect of hypophysectomy on acupuncture analgesia in the mouse. Brain Res 202: 33–39

    Article  PubMed  CAS  Google Scholar 

  16. Fujishita Y, Hisamitsu M, Takeshige C (1981) Difference between non-acupuncture point stimulation-produced and acupuncture analgesia after D-phenylalanine treatment. J Showa Med Assoc, 41, 657–662

    Google Scholar 

  17. Fujishita Y, Murai M, Takeshige C (1986) Inhibition of acupuncture and morphine analgesia caused by posterior hypothalamic stimulation and antagonistic action of D-phenylalanine in inhibition. J Showa Med Assoc 45: 799–805

    Google Scholar 

  18. Gol A (1967) Relief of pain by electrical stimulation of the septal area. J Neurol Sci 5: 115–120

    Article  PubMed  CAS  Google Scholar 

  19. Hisamitsu T (1979) Role of limbic system in acupuncture anesthesia: I. Analysis of evoked potential in limbic system induced by acupuncture stimulation. J Showa Med Assoc 38: 551–557

    Google Scholar 

  20. Hishida F, Luo CP, Okubo K, Takeshige C (1986) Differentiation of acupuncture point and non-acupuncture point explored by evoked potential of the central nervous system and its correlation with analgesia inhibitory system. J Showa Med Assoc 46: 35–43

    Google Scholar 

  21. Hishida F, Okamoto T, Takeshige C (1987) Individual variations in effectiveness of acupuncture analgesia evaluated by evoked potential in the dorsal periaqueductal central gray and effect of D-phenylalanine. J Showa Med Assoc 47: 153–158

    CAS  Google Scholar 

  22. Hishida F, Tanaka M, Mera T, Jauwhie, J, Takeshige C (1986) Effects of D–phenylalanine on individual variation of analgesia and on analgesia inhibitory system in their separated experimental procedures. J Showa Med Assoc 46: 45–51

    CAS  Google Scholar 

  23. Ito H (1981) Involvement of dopaminergic system in acupuncture analgesia. J Showa Med Assoc 41: 165–170

    Google Scholar 

  24. Jauwhie J, Sato T, Hisamitsu T, Takeshige C (1986) Acupuncture afferent and efferent pathways in the reticulogigantocellular nucleus and reticuloparagigantocellular nucleus. J Showa Med Assoc 46: 65–73

    Article  Google Scholar 

  25. Kawakita K (1981) Role of the polymodal receptors in acupuncture analgesia of the rat. Comp Med East-West 6 (4): 312–321

    Article  Google Scholar 

  26. Kinoshita H (1981) Experimental research of acupuncture effect on local pain: I. Mechanism of acupuncture-moxibustion’s effect on local pain estimated from skin and muscle temperatures and volume pulse wave. J Showa Med Assoc 41: 147–156

    Google Scholar 

  27. Kinoshita H (1981) Experimental research of acupuncture effect on local pain: II. Effect of stationary insertion on the contraction recovery process following tetanus. J Showa Med Assoc 41: 393–403

    Google Scholar 

  28. Kinoshita H (1981) Experimental research of acupuncture effect on local pain: III. Effect of acupuncture in recovery from reduced muscle contraction of tetanized muscle and its correlation with conditions of acupuncture needling. J Showa Med Assoc 41: 405–409

    Google Scholar 

  29. Kobayashi RM, Palkovits M, Miller RJ, Chang KJ, Cuatrecasas P (1978) Brain encephalin distribution is unaltered by hypophysectomy. Life Sci 22: 527–530

    Article  PubMed  CAS  Google Scholar 

  30. Kobori M, Mera H, Takeshige C (1981) Central acupuncture afferent pathways. J Showa Med Assoc 41: 619–628

    Google Scholar 

  31. Kobori M, Mera H, Takeshige C (1982) Nature of acupuncture point and non–point stimulation produced analgesia after lesion of analgesia inhibitory system. J Showa Med Assoc 42: 589–598

    Google Scholar 

  32. Kuhar MJ, Pert CB, Snyder SH (1973) Regional distribution of opiate receptor binding in monkey and human brain. Nature 245: 447–450

    Article  PubMed  CAS  Google Scholar 

  33. Kusumoto S, Sato M, Takeshige C (1985) The experimental research on acupuncture effect on local muscle pain: V. The reflex center of acupuncture needling effect of perivertebral muscle on the recovery from reduced twitch in the gastrocnemius muscle after tetanic stimulation. J Showa Med Assoc 45: 279–285

    Google Scholar 

  34. Kuwazawa J, Sato M, Takeshige C (1987) Experimental research of acupuncture effect on local muscle pain: VI. Effect of vasodilators and neuropeptide on recovery from the reduced twitch after tetanic stimulation. J Showa Med Assoc 47: 15–22

    Google Scholar 

  35. Le Bars D, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls ( DNIC ): I. Effects on dorsal horn convergent neurons in the rat. Pain 6: 283–304

    Google Scholar 

  36. Le Bars D, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls ( DNIC ): II. Lack of effect on non–convergent neurons, supraspinal involvement and theoretical implications. Pain 6: 305–327

    Google Scholar 

  37. Lewis JW (1986) Multiple neurochemical and hormonal mechanisms of stress–induced analgesia. Ann NY Acad Sci 457: 194–204

    Article  Google Scholar 

  38. Lewis JW, Cannon JT, Liebeskind JC (1980) Opioid and non-opioid mechanisms of stress analgesia. Science 208: 623–625

    Article  PubMed  CAS  Google Scholar 

  39. Lo FS, Yuan CS, Yaung SL, Tuanmu CH, Chang HT (1979) Inhibition of nociceptive discharges of parafascicular neurons by direct electrical stimulation of nucleus centrum medianum. Sci Sin 21 (4): 533–535

    Google Scholar 

  40. Lofstrom B, Pernow B, Wahren J (1965) Vasodilating action of substance P in the human forearm. Acta Physiol Scand 63: 311–324

    Article  CAS  Google Scholar 

  41. Luo CP, Hishida F, Kusumoto S, Takeshige C (1983) Inhibited region by analgesia inhibitory system in acupuncture non-point stimulation-produced analgesia. J Showa Med Assoc 43: 609–613

    Google Scholar 

  42. Luo CP, Sato M, Shimizu S, Takeshige C (1979) Role of limbic system in acupuncture analgesia: II. Role of septal nucleus and cingulate bundle in acupuncture and morphine analgesia. J Showa Med Assoc 39: 559–568

    Google Scholar 

  43. MacLennan AJ, Cragan RC, Hyson RL, Maier SF (1982) Corticosterone: a critical factor in opioid form of stress-induced analgesia. Science 215: 1530–1532

    Article  PubMed  CAS  Google Scholar 

  44. Matsuyama T, Wanaka A, Yoneda S, Kimura K, Kamada T, Girgis S, Macintyre I, Emson PC, Tohyama M (1986) Two distinct calcitonin gene-related peptide-containing peripheral nervous systems: distribution and quantitative differences between the iris and cerebral artery with special reference to substancce P. Brain Res 373: 205–212

    Article  PubMed  CAS  Google Scholar 

  45. Mayer DJ, Liebeskind JC (1974) Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis. Brain Res 68: 73–93

    Article  PubMed  CAS  Google Scholar 

  46. Mayer DJ, Price DD, Rafii A (1977) Antagonism of acupuncture analgesia in man by narcotic antagonist naloxone. Brain Res 121: 369–372

    Article  Google Scholar 

  47. Mayer DJ, Wolfle TL, Akil H, Carder B, Liebeskind JC (1971) Analgesia from electrical stimulation in the brainstem of the rat. Science 174: 1351–1354

    Article  PubMed  CAS  Google Scholar 

  48. Menetrey D, Giesler Jr GJ, Besson JM (1977) An analysis of response properties of spinal cord dorsal horn neurons to non-noxious and noxious stimuli in the spinal rat. Exp Brain Res 27: 15–33

    Article  PubMed  CAS  Google Scholar 

  49. Mera T (1987) The paragigantocellular nucleus as the descending pain inhibitory system in acupuncture analgesia. J Showa Med Assoc 47: 89–97

    Google Scholar 

  50. Mera H, Kobori M, Takeshige C (1981) Acupuncture and morphine analgesia inhibitory system in the lateral centromedian nucleus of the thalamus. J Showa Med Assoc 41: 629–640

    Google Scholar 

  51. Mera H, Kobori M, Takeshige C (1981) Relationship between acupuncture, morphine tolerance and analgesia inhibitory system. J Showa Med Assoc 41: 641–645

    Google Scholar 

  52. Mera H, Kobori M, Takeshige C (1981) Differentiation between acupuncture analgesia producing central system and analgesia producing system inhibited by analgesia inhibitory system by different production of morphine tolerance. J Showa Med Assoc 42: 599–604

    Google Scholar 

  53. Mizuno T, Takahashi G (1982) Abolishment of acupuncture analgesia measured by vocalization after hypophysectomy. J Showa Med Assoc 42: 427–431

    Google Scholar 

  54. Mizuno T (1982) The nature of acupuncture point investigated by evoked potential from the dorsal periaqueductal central gray in acupuncture afferent pathway. J Showa Med Assoc 42: 417–425

    Google Scholar 

  55. Ogawa N, Panerai AE, Lee S, Forsbach G, Havlicek V, Friesen HG (1979) β-endorphin concentration in the brain of intact and hypophysectomized rats. Life Sci 25: 317–326

    Google Scholar 

  56. Oka K (1979) Abolishment of acupuncture analgesia by partial lesion of periaqueductal central gray. J Showa Med Assoc 39: 397–407

    Google Scholar 

  57. Oka K, Takeshige C (1979) Effect of acupuncture or periaqueductal central gray stimulation on noxious responses in brainstem reticular formation neurons. J Showa Med Assoc 39: 569–580

    Google Scholar 

  58. Okubo K (1987) Effect of the pituitary or adrenal gland ablation on analgesia caused by the acupuncture point stimulation or non-acupuncture point stimulation after lesion of the analgesia inhibitory system. J Showa Med Assoc 47: 99–106

    Google Scholar 

  59. Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179: 1011–1014

    Article  PubMed  CAS  Google Scholar 

  60. Poitras D, Parent A (1978) Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat. J Comp Neurol 179: 699–718

    Article  PubMed  CAS  Google Scholar 

  61. Pomeranz B, Chiu D (1976) Naloxone blockade of acupuncture analgesia: endorphin implicated. Life Sci 19: 1757–1762

    Article  PubMed  CAS  Google Scholar 

  62. Rhodes DL, Liebeskind JC (1978) Analgesia from rostral brain stem stimulation in the rat. Brain Res 143: 521–532

    Article  PubMed  CAS  Google Scholar 

  63. Sato M, Takeshige C (1982) Experimental research on acupuncture effect on local pain: IV. Effect of acupuncture application on perivertebral muscle in the recovery process from reduced twitch of gastrocnemius muscle after tetanic stimulation. J Showa Med Assoc 42: 441–447

    Google Scholar 

  64. Sato T, Takeshige C (1981) Morphine analgesia caused by activation of spinal acupuncture afferent pathway in the anterolateral tract: experimental study of extradural analgesia. J Showa Med Assoc 41: 663–673

    CAS  Google Scholar 

  65. Sato T, Usami S, Takeshige C (1983) Role of the arcuate nucleus of the hypothalamus as the descending pain inhibitory system in acupuncture point and non-point stimulation produced analgesia. J Showa Med Assoc 43: 619–627

    Google Scholar 

  66. Sato T, Mera T, Abe M, Takeshige C (1986) The ventromedial! nucleus of the hypothalamus as the descending pain inhibitory system. J Showa Med Assoc 46: 59–64

    Google Scholar 

  67. Sicuteri F, Franchi G, Michelacci S (1974) Biochemical mechanism of ischemic pain. Adv Neurol 4: 39–44

    CAS  Google Scholar 

  68. Sjolund BH, Eriksson MBE (1979) The influence of naloxone on analgesia produced by peripheral conditioning stimulation. Brain Res 173: 295–301

    Article  PubMed  CAS  Google Scholar 

  69. Sjolund BH, Eriksson BE (1979) Endorphins and analgesia produced peripheral conditioning stimulation. Adv Pain Res Ther 3: 587–592

    Google Scholar 

  70. Sjolund B, Terenius L, Eriksson M (1977) Increased cerebrospinal fluid levels of endorphins after electroacupuncture. Acta Physiol Scand 160: 382–384

    Article  Google Scholar 

  71. Snyder SH (1975) Opiate receptor in normal and drug altered brain function. Nature 257: 185–189

    Article  CAS  Google Scholar 

  72. Takahashi G, Mera H, Kobori M (1983) Inhibitory action on analgesic inhibitory system and augmenting action on naloxone reversible analgesia of D-phenylalanine. J Showa Med Assoc 43: 603–608

    CAS  Google Scholar 

  73. Takahashi G, Usami S, Kusumoto S (1983) Abolishment of analgesia in acupuncture anesthesia measured by writhing test after hypophysectomy. J Showa Med Assoc 43: 615–618

    Google Scholar 

  74. Takeshige C (1987) Inhibition associated with acupuncture analgesia. Neurol Neurobiol 28: 255–262

    Google Scholar 

  75. Takeshige C (1985) Differentiation between acupuncture and non–acupuncture points by association with analgesia inhibitory system. Acupunct Elektrother Res 10: 195–203

    CAS  Google Scholar 

  76. Takeshige C, Luo CP, Kamada Y (1976) Modulation of EEG and unit discharges of deep structures of brain during acupuncture stimulation and hypnosis of rabbits. Adv Pain Res Therap 1: 781–785

    Google Scholar 

  77. Takeshige C, Mera H, Kobori M, Sato T, Luo CP (1981) Afferent and efferent pathways in acupuncture analgesia and their correlation with morphine analgesia. Adv. Endogenous and Exogenous Opioids, Proceeding of the International Narcotic Research Conference, Kyoto, Japan. July 26–30, 1981 Kodansha Ltd, Tokyo, pp 291–293

    Google Scholar 

  78. Takeshige C, Murai M, Tanaka M, Hachisu M (1983) Parallel individual variations in effectiveness of acupuncture, morphine analgesia, and dorsal PAG-SPA and their abolition by Dphenylalanine. Adv Pain Res, Ther 5: 563–569

    Google Scholar 

  79. Takeshige C, Sato T, Komugi H (1980) Role of periaqueductal central gray in acupuncture analgesia. Acupunct Electrother Res 5: 323–337

    Google Scholar 

  80. Tanaka M, Igarashi O, Hisamitsu T, Takeshige C (1988) Effect of D-phenylalanine and proglumide on analgesia inhibitory system. J Showa Med Assoc (In press)

    Google Scholar 

  81. Tanaka M, Murai M, Okubo K, Jauwhie J, Takeshige C (1985) Abolition of analgesia caused by low frequency acupuncture stimulation after intraventricular application of anti-serum of β-endorphin. J Showa Med Assoc 46: 53–58

    Google Scholar 

  82. Tanaka M, Sato T, Okamoto T, Takeshige C (1987) Morphine analgesia mediated by activation of the acupuncture afferent pathway as evaluation of the dose response relationship. J Showa Med Assoc 47: 159–166

    Google Scholar 

  83. Teitelbaum H, Catravas GN, McFarland WL (1974) Reversal of morphine tolerance after medial thalamis lesions in the rat. Science 185: 449–451

    Article  PubMed  CAS  Google Scholar 

  84. Toda K, Ichioka M (1978) Electroacupuncture: relations between forelimb afferent impulses and suppression of jaw-opening reflex elicited by tooth pulp stimulation. Jpn J Physiol 28: 485–497

    Article  Google Scholar 

  85. Tsuruoka M (1987) Suppression of the tail flick reflex by A afferent nerve impulses. J Showa Med Assoc 43: 43–55

    Google Scholar 

  86. Usami S, Takeshige C (1983) The difference in analgesia producing central pathway of stress induced analgesia and that of acupuncture point and non-pont stimulation-produced analgesia. J Showa Med Assoc 43: 629–638

    Google Scholar 

  87. Watkins LR, Kinscheck IB, Mayer DJ (1985) Potentiation of morphine analgesia by the cholecystokinin antagonist proglumide. Brain Res 327: 169–180

    Article  PubMed  CAS  Google Scholar 

  88. Watkins LR, Mayer DJ (1982) Organization of endogenous opiate and nonopiate pain control systems. Science 216: 1185–1192

    Article  PubMed  CAS  Google Scholar 

  89. Watkins LR, Cobelli DA, Newsome HH, Mayer DJ (1982) Footshock induced analgesia is dependent neither on pituitary nor sympathetic activation. Brain Res 245: 81–96

    Article  PubMed  CAS  Google Scholar 

  90. Willcockson WS, Kim J, Shin HK, Chung JM, Willis WD (1986) Actions of opioids on primate spinothalamic tract neurons. J Neurosci 6: 2509–2520

    PubMed  CAS  Google Scholar 

  91. Woolf CJ, Barrett GD, Mitchell D, Myers RA (1977) Naloxone-reversible peripheral electroanalgesia in intact and spinal rats. Eur J Pharmacol 45: 311–314

    Article  PubMed  CAS  Google Scholar 

  92. Woolf CJ, Mitchell D, Barrett GD (1980) Antiociceptive effect of peripheral segmental electrical stimulation in the rat. Pain 8: 237–252

    Article  PubMed  CAS  Google Scholar 

  93. Yaksh TL (1978) Analgesic action of intrathecal opiates in cat and primate. Brain Res 153: 205–210

    Article  PubMed  CAS  Google Scholar 

  94. Yaksh TL, Rudy TA (1976) Analgesia mediated by a direct spinal action of narcotics. Science 192: 1357–1358

    Article  PubMed  CAS  Google Scholar 

  95. Yaksh TL, Rudy RA (1977) Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J Pharmacol Exp Ther 202: 411–428

    PubMed  CAS  Google Scholar 

  96. Yaksh TL, Yeung JC, Rudy TA (1976) Systemic examination in the rat of brain stem sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray. Brain Res 114: 83–103

    Article  PubMed  CAS  Google Scholar 

  97. Yeung JC, Yaksh TL, Rudy TA (1975) Effects of brain lesions on the antinociceptive properties of morphine in rats. Clin Exp Pharmacol Physiol 2: 261–268

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takeshige, C. (1989). Mechanism of Acupuncture Analgesia Based on Animal Experiments. In: Pomeranz, B., Stux, G. (eds) Scientific Bases of Acupuncture. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73757-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73757-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19335-7

  • Online ISBN: 978-3-642-73757-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics