Percutaneous Transluminal Laser Angioplasty for Treatment of Peripheral Vascular Disease: Clinical Experience with 16 Patients

  • Robert Ginsburg
  • L. Wexler
  • R. S. Mitchell
  • D. Profitt


Recent studies have demonstrated the ability of laser radiation to recanalize occluded or severely stenotic arteries. Lasers in the infrared, visible, and ultraviolet regions have been used successfully to ablate atherosclerotic plaques in vitro [1–9] (Table 1). Moreover, in early clinical trials, transcatheter fiberoptic neodymium/yttrium/aluminum/garnet (Nd-YAG) and argon lasers have been used to vaporize plaques in peripheral arteries [10, 11]. Theoretically, the appeal of laser angioplasty is that it can debulk or remove the lesion, in contrast to balloon angioplasty, which compresses and tears the intima in the process of mechanically dilating the vessel [12]. Although studies in rabbits, dogs, and monkeys have been used to test both the acute and chronic effects of laser angioplasty, we know of no model which can simulate all of the characteristics unique to man [13]. We wish to describe our experience with percutaneous transluminal laser angioplasty of the peripheral arteries in 16 patients with symptoms or signs of atherosclerosis.


Atherosclerotic Plaque Balloon Angioplasty Peripheral Artery Luminal Diameter Quartz Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abela GS, Normann S, Cohen D, Feldman RL, Geiser EA, Conti CR (1982) Effects of carbon dioxide, Nd-YAG, and argon laser radiation on coronary atheromatous plaques. Am J Cardiol 50: 1199–1205PubMedCrossRefGoogle Scholar
  2. 2.
    Choy DSJ, Stertzer SH, Rotterdam HZ, Bruno MS (1982) Laser coronary angioplasty: experience with 9 cadaver hearts. Am J Cardiol 50: 1209–1211PubMedCrossRefGoogle Scholar
  3. 3.
    Eldar M, Battler A, Neufeld HN, et al (1984) Transluminal carbon dioxide-laser catheter angioplasty for dissolution of atherosclerotic plaques. J Am Col Cardiol 3: 135–137CrossRefGoogle Scholar
  4. 4.
    Livesay JJ, Cooley DA (1984) Laser coronary endarterectomy: proposed treatment for diffuse coronary atherosclerosis. Tex Heart Inst J 11: 276–279PubMedGoogle Scholar
  5. 5.
    Livesay JJ, Johansen WE, Sutter LV, Klima T, Painvin GA, Follett DM (1984) Experimental technique of laser coronary endarterectomy and its immediate effects on atherosclerotic plaques in cadaver hearts. Tex Heart Inst J 11: 280–285PubMedGoogle Scholar
  6. 6.
    Gerrity RG, Loop FD, Golding LAR, Ehrhart LA, Argenyi ZB (1983) Arterial response to laser operation for removal of atherosclerotic plaques. J Thorac Cardiovasc Surg 85: 409–421PubMedGoogle Scholar
  7. 7.
    Geschwind H, Boussaignac G, Teisseire B, et al (1983) Laser angioplasty: effects on coronary artery stenosis. Letter to the editor. Lancet 2: 1134PubMedCrossRefGoogle Scholar
  8. 8.
    Grundfest W, Litvack F, Forrester J, et al (1984) Pulsed ultraviolet lasers provide precise control of atheroma ablation (abstr.). Circulation 70 (suppl): 11–35Google Scholar
  9. 9.
    Isner JM, Clarke RH, Donaldson RG, et al (1984) The excimer laser: gross, light microscopic, and ultrastructural analysis of potential advantages for use in laser therapy of cardiovascular disease (abstr.). Circulation 70 (suppl.) 11–35Google Scholar
  10. 10.
    Ginsburg R, Kim DS, Guthaner D, Thoth J, Mitchell RS (1984) Salvage of an ischemic limb by laser angioplasty: description of a new technique. Clin Cardiol 7: 54–58PubMedCrossRefGoogle Scholar
  11. 11.
    Geschwind H, Boussignac G, Teisseire B, et al (1984) Percutaneous transluminal laser angioplasty in man. Letter to the editor. Lancet 1: 844PubMedCrossRefGoogle Scholar
  12. 12.
    Council on Scientific Affairs (1984) Percutaneous transluminal angioplasty. JAMA 251: 764–768CrossRefGoogle Scholar
  13. 13.
    Gessman L, Reno C, Maranhao V (1984) Transcatheter laser dissolution of human atherosclerotic plaques: a model for testing catheters and techniques. Cathet Cardiovasc Diagn 10: 47–54PubMedCrossRefGoogle Scholar
  14. 14.
    Abela GS, Crea F, Smith W, Pepine CJ, Conti CR (1985) In vitro effects of argon laser radiation on blood: quantitative and morphologic analysis. J Am Coll Cardiol 5: 231–237PubMedCrossRefGoogle Scholar
  15. 15.
    Lee G, Ikeda RM, Stobbe D, et al (1983) Laser irradiation of human atherosclerotic ob-structive disease: simultaneous visualization and vaporization achieved by a dual fiberoptic catheter. Am Heart J 105: 163–164PubMedCrossRefGoogle Scholar
  16. 16.
    Lee G, Ikeda RM, Stobbe D, et al (1984) Intraoperative use of dual fiberoptic catheter for simultaneous in vivo visualization and laser vaporization of peripheral atherosclerotic obstructive disease. Cathet Cardiovasc Diagn 10: 11–16PubMedCrossRefGoogle Scholar
  17. 17.
    Murphy-Chutorian D, Kosek J, Mok W, et al (1985) Selective absorption of ultraviolet laser energy by atherosclerotic plaque treated with tetracycline. Am J Cardiol 55: 1293–1297PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Robert Ginsburg
    • 1
  • L. Wexler
  • R. S. Mitchell
  • D. Profitt
  1. 1.Vascular Treatment and Research Unit, Falk Cardiovascular Research CenterStanford Medical CenterStanfordUSA

Personalised recommendations