Geobiological Effects on the Mobility of Contaminants in Marine Sediments

  • M. Kersten


The marine environment of the North Sea is the major receptacle of waste products introduced by atmospheric and river input from the adjacent highly industrialized countries. However, this environment is too readily assumed to represent an efficient and inert sink. This assumption is based mainly on the concept that the sea acts as an infinite dilutor of the introduced pollutants, and on the concept that most of the inorganic and organic pollutants will ultimately be buried at sea bottom, at least within distinct sediment accumulation areas such as the tidal flats, the inner German Bight, and Skagerrak basin. However, contaminated sediments encountered in such areas within the North Sea may pose a serious problem in the near future through potential secondary pollution effects with yet quite unknown release potential for the next decades. This chapter will review the increasing alarming evidence that such secondary pollution effects may indeed arise from marine deposits.


Pore Water Marine Sediment Overlie Water German Bight Deposit Feeder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aller RC (1980) Diagenetic processes near the sediment-water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P). Adv Geophys 22:237–350.CrossRefGoogle Scholar
  2. Aller RC (1982) The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: (eds) Animal-sediment relations. Plenum Press, New York, pp 53–102 (Topics in Geobiology, vol 2).Google Scholar
  3. Aller RC, Yingst JY (1985) Effects of marine deposit-feeders Heteromastus filifornis (Polychaeta), Macoma balthica (Bivalvia), and Tellina texana (Bivalvia) on averaged sedimentary solute transport, reaction rates, and microbial distributions. J Mar Res 43:615–645.CrossRefGoogle Scholar
  4. Baeyens W, Gillain G, Hoenig M, Dehairs F (1986) Mobilization of major and trace elements at the water-sediment interface in the Belgian coastal area and the Scheid estuary. In: Nihoul JCJ (ed) Dynamic biological processes at marine physical interfaces. Elsevier, Amsterdam, pp 453–466.Google Scholar
  5. Balzer W (1984) Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight). Limnol Oceanogr 29:1231–1246.CrossRefGoogle Scholar
  6. Baumfalk YA (1979) Heterogeneous grain size distribution in tidal flat sediment caused by bioturbation activity of Arenicola marina (Polychaeta). Neth J Sea Res 13:428–440.CrossRefGoogle Scholar
  7. Berner RA (1981) Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortschr Miner 59:117–133.Google Scholar
  8. Billen G (1978) A budget of nitrogen recycling in North Sea sediments off the Belgian coast. Estuar Coastal Mar Sci 7:127–146.CrossRefGoogle Scholar
  9. Brockmann UH, Eberlein K (1986) River input of nutrients into the German Bight. In: Skreslet S (ed) The role of freshwater outflow in coastal marine ecosystems. NATO ASI Ser G7, Springer, Berlin Heidelberg New York Tokyo, pp 231–240.CrossRefGoogle Scholar
  10. Brown SL (1986) Feces of intertidal benthic invertebrates: influence of particle selection in feeding on trace element concentration. Mar Ecol Prog Ser 28:219–231.CrossRefGoogle Scholar
  11. Calmano W, Förstner U (1983) Chemical extraction of heavy metals in polluted river sediments in Central Europe. Sci Total Environ 28:77–90.CrossRefGoogle Scholar
  12. Courtney WAM, Denton GRW (1977) Persistence of polychlorinated biphenyls in the hard-clam Mercenaria mercenaria and the effect upon the distribution of these pollutants in the estuarine environment. Environ Pollut 10:55–64.Google Scholar
  13. Dicke M (1986) Vertikale Austauschkoeffizienten und Porenwasserfluβ an der Sediment/Wasser-Grenzfläche. Thesis, University of Kiel (Berichte IfM Kiel, vol 155).Google Scholar
  14. Dominik J, Förstner U, Mangini A, Reineck HE (1978) 210Pb and 137Cs chronology of heavy metal pollution in a sediment core from the German Bight (North Sea). Senckenberg Mar 10:213–227.Google Scholar
  15. Duinker JC, Nolting RF (1977) Dissolved and particulate trace metals in the Rhine estuary and the Southern Bight. Mar Pollut Bull 8:68–71.CrossRefGoogle Scholar
  16. Eckman JE (1985) Flow disruption by an animal-tube mimic affects sediment bacterial colonization. J Mar Res 43:419–435.CrossRefGoogle Scholar
  17. Eisma D (1981) Supply and deposition of suspended matter in the North Sea. Spec Publ Int Ass Sediment 5:415–428.Google Scholar
  18. Elderfield H, McCaffrey PJ, Luedtke N, Bender M, Truesdale VW (1981) Chemical diagenesis in Narragansett Bay sediments. Am J Sci 281:1021–1055.CrossRefGoogle Scholar
  19. Emerson S, Jahnke R, Heggie D (1984) Sediment-water exchange in shallow water estuarine sediments. J Mar Res 42:709–730.CrossRefGoogle Scholar
  20. Ernst W, Goerke H, Weber K (1977) Fate of 14C-labelled di-, tri-and pentachlorobiphenyl in the marine annelid Nereis virens II. Degradation and faecal elimination. Chemosphere 9:559–568.CrossRefGoogle Scholar
  21. Fernex FE, Span D, Flatau GN, Renard D (1986) Behavior of some metals in surficial sediments of the northwest Mediterranean continental shelf. In: Sly PG (ed) Sediments and water interactions. Springer, Berlin Heidelberg New York Tokyo, pp 353–370.CrossRefGoogle Scholar
  22. Förstner U, Ahlf W, Calmano W, Kersten M (1986) Mobility of pollutants in dredged materials — implications for selecting disposal options. In: Kullenberg D (ed) The role of the oceans as a waste disposal option. Reidel, Doordrecht, pp 597–615.Google Scholar
  23. Gendron A, Silverberg N, Sundby B, Lebel J (1986) Early diagenesis of cadmium and cobalt in sediments of the Laurentian Trough. Geochim Cosmochim Acta 50:741–747.CrossRefGoogle Scholar
  24. Goldhaber MB, Aller RC, Cochran JK, Rosenfeld JK, Martens CS, Berner RA (1977) Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: report of the FOAM Group. Am J Sci 277:193–237.CrossRefGoogle Scholar
  25. Gordon D, Dale J, Keizer P (1978) Importance of sediment reworking by the deposit-feeding polychaete Arenicola marina on the weathering rate of sediment-bound oil. J Fish Res Bd Can 35:591–603.CrossRefGoogle Scholar
  26. Gossett RW, Brown DA, Young DR (1983) Predicting the bioaccumulation of organic compounds in marine organisms using octanol/water partition coefficients. Mar Pollut Bull 14:387–392.CrossRefGoogle Scholar
  27. Graf G (1987) Benthic energy flow during a simulated autumn bloom sedimentation. Mar Ecol Prog Ser 39:23–29.CrossRefGoogle Scholar
  28. Gray JS (1982) Effects of pollutants on marine ecosystems. Neth J Sea Res 16:424–443.CrossRefGoogle Scholar
  29. Hainbucher D, Backhaus JO, Pohlmann T (1986) Atlas of climatological and actual seasonal circulation patterns in the North Sea and adjacent shelf regions: 1969–1981. Tech Rep, Inst Mar Res Univ Hamburg.Google Scholar
  30. Hines ME, Jones GE (1985) Microbial biogeochemistry and bioturbation in the sediments of Great Bay, New Hampshire. Estuar Coastal Shelf Sci 20:729–742.CrossRefGoogle Scholar
  31. Hines ME, Lyons WB, Armstrong PB, Orem WH, Spencer MJ, Gaudette HE, Jones GE (1984) Seasonal metal remobilization in the sediments of Great Bay, New Hampshire. Mar Chem 15:173–187.CrossRefGoogle Scholar
  32. Hunt CD, Smith DL (1983) Remobilization of metals from polluted marine sediments. Can J Fish Aquat Sci 40 (Suppl 2):132–142.CrossRefGoogle Scholar
  33. Hylleberg J (1975) Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia 14:113–137.Google Scholar
  34. Irion G, Schwedhelm E (1983) Heavy metals in surface sediments of the German Bight and adjoining areas. In: Müller G (ed) Intern Conf Heavy metals in the environment, Heidelberg, Sept 1983, vol 2. CEP Consultants, Edinburgh, pp 888–891.Google Scholar
  35. Jernelöv A (1970) Release of methyl mercury from sediments with layers containing inorganic mercury at different depth. Limnol Oceanogr 15:958–960.CrossRefGoogle Scholar
  36. Jones CJ, Murray JW (1984) Nickel, cadmium and copper in the Northeast Pacific off the coast of Washington. Limnol Oceanogr 29:711–720.CrossRefGoogle Scholar
  37. Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22:814–832.CrossRefGoogle Scholar
  38. Karickhoff SW, Morris KR (1985) Impact of tubificid polychaetes on pollutant transport in bottom sediments. Environ Sci Technol 19:51–56.CrossRefGoogle Scholar
  39. Kerner M, Kausch H, Kersten M (1986) Der Einfluß der Gezeiten auf die Verteilung von Nährstoffen und Schwermetallen in Wattsedimenten des Elbe-Aestuars. Arch Hydrobiol Suppl 75:118–131.Google Scholar
  40. Kersten M, Förstner U (1985) Trace metal partitioning in suspended matter with special reference to pollution in the southeastern North Sea. In: Degens ET, Kempe S, Herrera R (eds) Transport of carbon and minerals in major world rivers, Part 3. Mitt Geol-Paläontol Inst Univ Hamburg, SCOPE/UNEP Sonderbd 58:631-645.Google Scholar
  41. Kersten M, Förstner U (1986) Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Wat Sci Tech 18:121–130.Google Scholar
  42. Kersten M, Klatt V (1988) Trace metal inventory and geochemistry of the North Sea shelf sediments. In: Degens ET, Kempe S, Liebezeit G (eds) TOSCH-Sonderband. Mitt Geol-Paläontol Inst Univ Hamburg (in press).Google Scholar
  43. Kremling K (1983) Trace metal fronts in European shelf waters. Nature (Lond) 303:225–227.CrossRefGoogle Scholar
  44. Kremling K (1985) The distribution of cadmium, copper, nickel, manganese, and aluminium in surface waters of the open Atlantic and European shelf area. Deep-sea Res 32:531–555.CrossRefGoogle Scholar
  45. Krom MD, Berner RA (1981) The diagenesis of phosphorus in a nearshore marine sediment. Geochim Cosmochim Acta 45:207–216.CrossRefGoogle Scholar
  46. Lee H, Swartz RC (1980) Biological processes affecting the distribution of pollutants in marine sediments. Part II: biodeposition and bioturbation. In: Baker RA (ed) Contaminants and sediments, vol 2. Ann Arbor Sci Publ, Ann Arbor, MI, pp 555–606.Google Scholar
  47. Lyle M (1983) The brown-green color transition in marine sediments: a marker of the Fe(III)-Fe(II) redox boundary. Limnol Oceanogr 28:1026–1033.CrossRefGoogle Scholar
  48. Lyle M, Heath GR, Robbins JM (1984) Transport and release of transition elements during early diagenesis: sequential leaching of sediments from MANOP sites M and H. Part I: pH 5 acetic acid leach. Geochim Cosmochim Acta 48:1705–1715.CrossRefGoogle Scholar
  49. Lyons WB, Loder TC, Murray SM (1982) Nutrient pore water chemistry, Great Bay, New Hampshire; benthic fluxes. Estuaries 5:230–233.CrossRefGoogle Scholar
  50. Mart L, Nürnberg HW (1986) Cd, Pb, Cu, Ni and Co distribution in the German Bight. Mar Chem 18:197–213.CrossRefGoogle Scholar
  51. McCaffrey RJ, Myers AC, Davey E, Morrison G, Bender M, Luedtke N, Cullen D, Froelich P, Klinkhammer G (1980) The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island. Limnol Oceanogr 25:31–44.CrossRefGoogle Scholar
  52. McCall PL (1977) Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound. J Mar Res 35:221–266.Google Scholar
  53. McCall PL, Fisher JB (1980) Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments. In:Brinkhurst RO, Cook DG (eds) Aquatic oligochaete biology. Plenum Press, New York, pp 253–317.CrossRefGoogle Scholar
  54. McCall PL, Tevesz MJS (eds) (1982) Animal-sediment relations. Plenum Press, New York (Topics in Geobiology, vol 2).Google Scholar
  55. Morris AW, Bale AJ, Howland RJM (1982) The dynamics of estuarine manganese cycling. Estuarine Coastal Shelf Sci 13:175–192.CrossRefGoogle Scholar
  56. Muschenheim DK (1987) The dynamics of near-bed seston flux and suspension-feeding animals. J Mar Res 45:473–496.CrossRefGoogle Scholar
  57. Nichols F (1974) Sediment turnover by a deposit-feeding polychaete. Limnol Oceanogr 19:945–950.CrossRefGoogle Scholar
  58. Nolting RF (1986) Copper, zinc, cadmium, nickel, iron and manganese in the Southern Bight of the North Sea. Mar Pollut Bull 17:113–117.CrossRefGoogle Scholar
  59. Nowell AR, Jumars PA, Eckman JE (1981) Effects of biological activity on the entrainment of marine sediments. Mar Geol 42:133–153.CrossRefGoogle Scholar
  60. Ott JA, Fuchs B, Fuchs R, Malasek A (1976) Observations on the biology of Callianassa stebbingi Borradaile and Upogebia litoralis Risso and their effect upon sediment. Senckenberg Marit 8:61–79.Google Scholar
  61. Peterson ML, Carpenter R (1986) Arsenic distributions in pore water and sediments of Puget Sound, Lake Washington, the Washington coast and Saanich Inlet, B.C. Geochim Cosmochim Acta 50:353–369.CrossRefGoogle Scholar
  62. Rachor E (1980) The inner German Bight — an ecologically sensitive area, as indicated by the bottom fauna. Helgol Meeresunters 33:522–530.CrossRefGoogle Scholar
  63. Rachor E, Bartel S (1981) Occurrence and ecological significance of the spoon-worm Echiurus echiurus in the German Bight. Veróff Inst Meeresforsch Bremerh 19:71–88.Google Scholar
  64. Renfro W (1973) Transfer of 65Zn from sediments by marine polychaete worms. Mar Biol 21:305–316.CrossRefGoogle Scholar
  65. Revsbech NP, Jørgensen BB, Blackburn TH (1980) Oxygen distribution in sediments measured with microelectrodes. Limnol Oceanogr 25:403–411.CrossRefGoogle Scholar
  66. Riedl RJ, Huang N, Machan R (1972) The subtidal pump: a mechanism of interstitial water exchange by wave action. Mar Biol 13:210–221.CrossRefGoogle Scholar
  67. Rhoads DC (1974) Organism-sediment relations on the muddy sea floor. Oceanogr Mar Biol Annu Rev 12:263–300.Google Scholar
  68. Rhoads DC, Boyer LF (1982) The effects of marine benthos on physical properties of sediments — a successional perspective. In: McCall PL, Tevesz MJS (eds) Animal-sediment relations. Plenum Press, New York, pp 3–52.Google Scholar
  69. Rhoads DC, Young DK (1970) The influence of deposit-feeding organisms on sediment stability and community trophic structure. J Mar Res 28:150–178.Google Scholar
  70. Risk MJ, Moffat JS (1977) Sedimentological significance of faecal pellets of Macoma balthica in the Minas Basin, Bay of Fundy. J Sedim Petrol 47:1425–1436.Google Scholar
  71. Rubenstein N, Wilkes FG, D’Asaro CN, Sommers C (1980) The effects of contaminated sediments on representative estuarine species and developing benthic communities. In: Baker RA (ed) Contaminants and Sediments, vol 1. Ann Arbor, Ann Arbor, MI, pp 445–461.Google Scholar
  72. Rubenstein N, Gilliam WT, Gregory NR (1984) Dietary accumulations of PCBs from a contaminated sediment source by a demersal fish (Leiostomus xanthurus). Aquat Toxicol 5:331–342.CrossRefGoogle Scholar
  73. Rutgers van der Loeff MM (1980) Nutrients in the interstitial water of the Southern Bight of the North Sea. Neth J Sea Res 14:144–171.CrossRefGoogle Scholar
  74. Rutgers van der Loeff MM, Anderson LG, Hall POJ, Iverfeldt A, Josefson AB, Sundby B, Westerlund SFG (1984) The asphyxiation technique: an approach to distinguishing between molecular diffusion and biologically mediated transport at the sediment-water interface. Limnol Oceanogr 29:675–686.CrossRefGoogle Scholar
  75. Salomons W (1985) Sediments and water quality. Env Technol Lett 6:315–326.CrossRefGoogle Scholar
  76. Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin Heidelberg New York Tokyo.CrossRefGoogle Scholar
  77. Salzwedel H, Rachor E, Gerdes D (1985) Benthicmacrofauna communities in the German Bight. Veröff Inst Meeresforsch Bremerh 20:199–267.Google Scholar
  78. Schäfer W (1972) Ecology and paleoecology of marine environments. (Oertel I, Craig GY, translators), Univ Chicago Press, Chicago, Illinois.Google Scholar
  79. Schink DR, Guinasso NL Jr (1978) Redistribution of dissolved and adsorbed materials in abyssal marine sediments undergoing biological stirring. Am J Sci 278:687–702.CrossRefGoogle Scholar
  80. Stumm W, Morgan JJ (1970) Aquatic chemistry. Wiley & Sons, New York.Google Scholar
  81. Suess E (1979) Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim Cosmochim Acta 43:339–352.CrossRefGoogle Scholar
  82. Suess E (1980) Particulate organic carbon flux in the oceans: Surface productivity and oxygen utilization. Nature (Lond) 288:260–263.CrossRefGoogle Scholar
  83. Vanderborght JP, Wollast R, Billen G (1977) Kinetic models of diagenesis in disturbed sediments, I: mass transfer properties and silica diagenesis. Limnol Oceanogr 22:787–793.CrossRefGoogle Scholar
  84. Wangersky PJ (1986) Biological control of trace metal residence time and speciation: A review and synthesis. Mar Chem 18:269–297.CrossRefGoogle Scholar
  85. Westerlund SG, Anderson LG, Hall POJ, Iverfeldt A, Rutgers van der Loeff MM, Sundby B (1986) Benthic fluxes of cadmium, copper, nickel, zinc, and lead in the coastal environment. Geochim Cosmochim Acta 50:1289–1296.CrossRefGoogle Scholar
  86. Zeitschel B (1980) Sediment-water interactions in nutrient dynamics. In: Tenore KR, Coull BC (eds) Marine benthic dynamics. Univ South Carolina Press, p 195.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Kersten
    • 1
  1. 1.Arbeitsbereich UmweltschutztechnikTechnische Universität Hamburg-HarburgHamburg 90Germany

Personalised recommendations