Dysplasias of Cerebellar Cortex

  • Reinhard L. Friede


Purkinje cells and the cells of cerebellar nuclei originate from precursors in the rhombic lip. They form much earlier than the granule cells, basket cells and stellate cells which derive from the division of cells in the superficial granular layer of the cortex (Altman 1969; Das and Nornes 1972; Altman and Bayer 1978). In the rat, deep nuclear neurons originate on the 13th–14th day of gestation, the Purkinje cells on the 15th–16th day, the interstitial nerve cells on the 15th–18th day, the marginal cells on the 16th day and the Golgi cells on the 17th-19th day. The earliest stock of granule cells, basket cells and stellate cells appears near birth (21st day) in the nodulus and flocculus. Other parts of the cortex acquire their granule cells postnatally, earlier in the vermis than in the hemispheres (Altman 1969). The subsequent cellular maturation of the cortex is reviewed in Chap. 1.


Purkinje Cell Granule Cell Molecular Layer Cerebellar Cortex Granular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136:269–294PubMedCrossRefGoogle Scholar
  2. Altman J (1973) Experimental reorganization of the cerebellar cortex. III. Regeneration of the external germinal layer and granule cell ectopia; IV. Parallel fiber reorientation following regeneration of the external germinal layer. J Comp Neurol 149:153–180PubMedCrossRefGoogle Scholar
  3. Altman J (1973) Experimental reorganization of the cerebellar cortex. III. Regeneration of the external germinal layer and granule cell ectopia; IV. Parallel fiber reorientation following regeneration of the external germinal layer. J Comp Neurol 149: 181–192PubMedCrossRefGoogle Scholar
  4. Altman J, Anderson WJ (1973) Experimental reorganization of the cerebellar cortex. II. Effects of elimination of most microneurons with prolonged X-irradiation started at four days. J Comp Neurol 149:123–152PubMedCrossRefGoogle Scholar
  5. Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179:23–48PubMedCrossRefGoogle Scholar
  6. Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol 231:1–26PubMedCrossRefGoogle Scholar
  7. Altman J, Anderson WJ, Wright KA (1969) Reconstitution of the external granular layer of the cerebellar cortex in infant rats after low-level X-irradiation. Anat Rec 163:453–472PubMedCrossRefGoogle Scholar
  8. Ambler M, Pogacar S, Sidman R (1969) Lhermitte-Duclos disease (granule cell hypertrophy of the cerebellum). Pathological analysis of the first familial cases. J Neuropathol Exp Neurol 28:622–647PubMedCrossRefGoogle Scholar
  9. Beuche W, Wickboldt J, Friede RL (1983) Lhermitte-Duclos disease. Its minimal lesions in electron microscope data and CT findings. Clin Neuropathol 2:163–170PubMedGoogle Scholar
  10. Bielschowsky M (1914) Über spätinfantile familiäre amaurotische Idiotie mit Kleinhirnsymptomen. Dtsch Z Nervenheilkd 50:7–29Google Scholar
  11. Bielschowsky M (1920) Zur Histopathologic und Pathogenese der amaurotischen Idiotie mit besonderer Berücksichtigung der zerebellären Veränderungen. J Psychol Neurol 26:123–199Google Scholar
  12. Brun A (1917/18) Zur Kenntnis der Bildungsfehler des Kleinhirns. Schweiz Arch Neurol Psychiatr 1:61–123Google Scholar
  13. Brun A (1917/18) Zur Kenntnis der Bildungsfehler des Kleinhirns. Schweiz Arch Neurol Psychiatr 2:48–105Google Scholar
  14. Brun A (1917/18) Zur Kenntnis der Bildungsfehler des Kleinhirns. Schweiz Arch Neurol Psychiatr 3:13–88Google Scholar
  15. Cook T, Holt S, Yates PO (1962) Diffuse hypertrophy of the cerebellum. J Neurol Neurosurg Psychiatry 25:218–221PubMedCrossRefGoogle Scholar
  16. Crome L (1956) Pachygyria. J Pathol Bacteriol 71:335–352PubMedCrossRefGoogle Scholar
  17. Das GD, Nornes HO (1972) Neurogenesis in the cerebellum of the rat: an autoradiographic study. Z Anat Entwickl-Gesch 138:155–165CrossRefGoogle Scholar
  18. Dvergsten CL, Fosmire GJ, Ollerich DA, Sanstead HH (1983) Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. I. Impaired acquisition of granule cells. Brain Res 271:217–226PubMedCrossRefGoogle Scholar
  19. Ebels EJ (1972) Studies on ectopic granule cells in the cerebellar cortex — with a hypothesis as to their aetiology and pathogenesis. Acta Neuropathol (Berl) 21:117–127CrossRefGoogle Scholar
  20. Friede RL (1964a) Arrested cerebellar development: a type of cerebellar degeneration in amaurotic idiocy. J Neurol Neurosurg Psychiatry 27:41–45PubMedCrossRefGoogle Scholar
  21. Friede RL (1964b) Further clinical and histochemical data on arrested cerebellar development. Neurology 14:1054–1057PubMedGoogle Scholar
  22. Friede RL, Mikolasek J (1978) Postencephalitic porencephaly, hydranencephaly or polymicrogyria. A review. Acta Neuropathol (Berl) 43:161–168CrossRefGoogle Scholar
  23. Gilden DH, Friedman HM, Nathanson N (1974) Tamiami virus induced cerebellar heterotopia. J Neuropathol Exp Neurol 33:29–41PubMedCrossRefGoogle Scholar
  24. Hallervorden J (1959) Über die Hamartome (Ganglioneurome) des Kleinhirns. Dtsch Z Nervenheilkd 179:531–563PubMedCrossRefGoogle Scholar
  25. Hausmann B, Sievers J (1985) Cerebellar external granule cells are attached to the basal lamina from the onset of migration up to the end of their proliferative activity. J Comp Neurol 241:50–62PubMedCrossRefGoogle Scholar
  26. Herringham WP, Andrewes FW (1888) Two cases of cerebellar disease in cats, with staggering. St Bartholomew Hosp Rep 24:241–248Google Scholar
  27. Hirano A, Dembitzer HM (1975) The fine structure of staggerer cerebellum. J Neuropathol Exp Neurol 34:1–11PubMedCrossRefGoogle Scholar
  28. Hirono I, Shibuya C, Hayashi K (1969) Induction of a cerebellar disorder with cycasin in newborn mice and hamsters. Proc Soc Exp Biol Med 131:593–600PubMedGoogle Scholar
  29. Jelgersma G (1917) Drei Fälle von Cerebellar-Atrophie bei der Katze; nebst Bemerkungen über das cerebro-cerebellare Verbindungssystem. J Psychol Neurol (Leipzig) 23:105–134Google Scholar
  30. Jervis GA (1950) Early familial cerebellar degeneration. (Report of three cases in one family). J Nerv Ment Dis 111:398–407PubMedGoogle Scholar
  31. Kilham L, Margolis G (1966a) Viral etiology of spontaneous ataxia of cats. Am J Pathol 48:991–1011PubMedGoogle Scholar
  32. Kilham L, Margolis G (1966 b) Spontaneous hepatitis and cerebellar “hypoplasia” in suckling rats due to congenital infections with rat virus. Am J Pathol 49:457–475PubMedGoogle Scholar
  33. Kilham L, Margolis G, Colby ED (1967) Congenital infections of cats and ferrets by feline panleukopenia virus manifested by cerebellar hypoplasia. Lab Invest 17:465–480PubMedGoogle Scholar
  34. Knebel Doeberitz C von, Sievers J, Sadler M, Pehlemann F-W, Berry M, Halliwell P (1986) Destruction of meningeal cells over the newborn hamster cerebellum with 6-hydroxydopamine prevents foliation and lamination in the rostral cerebellum. Neuroscience 17:409–426CrossRefGoogle Scholar
  35. León GA de, Grover WD, Mestre GM (1976) Cerebellar microgyria. Acta Neuropathol (Berl) 35:81-85CrossRefGoogle Scholar
  36. Lhermitte J, Duclos P (1920) Sur un ganglioneurome diffus du cortex du cervelet. Bull Assoc Fr Étude Cancer 9:99–107Google Scholar
  37. Mares V, Lodin Z (1970) The cellular kinetics of the developing mouse cerebellum. II. The function of the external granular layer in the process of gyrifaction. Brain Res 23:343–352PubMedCrossRefGoogle Scholar
  38. Meschede F (1872) Heterotopic grauer Hirnsubstanz im Markstamme der Hemisphären des kleinen Gehirns. Drei Beobachtungen. Arch Pathol Anat Physiol 56:82–96CrossRefGoogle Scholar
  39. Murofushi K (1974) Normalentwicklung und Dysgenesien von Dentatum und Oliva inferior. Acta Neuropathol (Berl) 27:317–328CrossRefGoogle Scholar
  40. Nathanson N, Cole GA, Van der Loos H (1969) Heterotopic cerebellar granule cells following administration of cyclophosphamide to suckling rats. Brain Res 15:532–536PubMedCrossRefGoogle Scholar
  41. Norman RM (1940) Primary degeneration of the granular layer of the cerebellum: an unusual form of familial cerebellar atrophy occurring in early life. Brain 63:365–379CrossRefGoogle Scholar
  42. Phemister RD, Shively JN, Young S (1969) The effects of gamma irradiation on the postnatally developing canine cerebellar cortex. I. Effects of single sublethal exposures. J Neuropathol Exp Neurol 28:119–127PubMedCrossRefGoogle Scholar
  43. Roessmann U, Wongmongkolrit T (1984) Dysplastic gangliocytoma of cerebellum in a newborn. Case report. J Neurosurg 60:845–847Google Scholar
  44. Rorke LB, Fogelson MH, Riggs HE (1968) Cerebellar heterotopia in infancy. Dev Med Child Neurol 10:644–650PubMedCrossRefGoogle Scholar
  45. Sarnat HB, Alcalá H (1980) Human cerebellar hypoplasia. A syndrome of diverse causes. Arch Neurol 37:300–305PubMedGoogle Scholar
  46. Schalch E, Friede RL (1979) A quantitative study of the composition of cerebellar cortical dysplasias. Acta Neuropathol (Berl) 47:67–70CrossRefGoogle Scholar
  47. Shimada M, Langman J (1970) Repair of the external granular layer of the hamster cerebellum after prenatal and postnatal administration of methylazoxymethanol. Teratology 3:119–134PubMedCrossRefGoogle Scholar
  48. Sievers J, Pehlemann F-W, Baumgarten H-G, Berry M (1985) Selective destruction of meningeal cells by 6-hydroxydopamine: a tool to study meningeal-neuroepithelial interaction in brain development. Dev Biol 110:127–135PubMedCrossRefGoogle Scholar
  49. Sosa JM, Palacios E, Sosa HMS de (1971) Heterotopic cerebellar granule cells inside the plexiform layer. Acta Anat 80:91–98PubMedCrossRefGoogle Scholar
  50. Stoughton RL, Del Cerro M, Walker JR, Swarz JR (1978) Presence of displaced neural elements within rat cerebellar fissures. Brain Res 148:15–29PubMedCrossRefGoogle Scholar
  51. Sturman JA, Moretz RC, French JH, Wisniewski HM (1985) Taurine deficiency in the developing cat: persistence of the cerebellar external granule cell layer. J Neurosci Res 13:405–416PubMedCrossRefGoogle Scholar
  52. Ule G (1952) Kleinhirnrindenatrophy vom Körnertyp. Dtsch Z Nervenheilkd 168:195–226PubMedCrossRefGoogle Scholar
  53. Van Bogaert L, Radermecker M-A (1955) Une dysgénésie cérébelleuse chez un enfant du radium. Rev Neurol (Paris) 93:65–82Google Scholar
  54. Volk B (1977) Delayed cerebellar histogenesis in “embryofetal alcohol syndrome”. Light microscopic study of the rat cerebellum. Acta Neuropathol (Berl) 39:157–163CrossRefGoogle Scholar
  55. Wiest W-D, Hallervorden J (1958) Migrationshemmung in Groß- und Kleinhirn. Dtsch Z Nervenheilkd 178:224–238PubMedCrossRefGoogle Scholar
  56. Yamano T, Shimada M, Abe Y, Ohta S, Ohno M (1983) Destruction of external granular layer and subsequent cerebellar abnormalities. Acta Neuropathol (Berl) 59:41–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Reinhard L. Friede
    • 1
  1. 1.Zentrum Neurologische Medizin, Abteilung NeuropathologieGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations