Skip to main content

Hydrocephalus — Basic Concepts and General Pathology

  • Chapter
Developmental Neuropathology

Abstract

The term hydrocephalus, in its broadest sense, means an increased amount of fluid in the CSF spaces, particularly in the cerebral ventricles, as opposed to local accumulations of fluid in subdural hygromas, arachnoid cysts, or within tissue defects. Enlarged cerebral ventricles may result from their distension by increased pressure, or from atrophy caused by the loss of cells. It is customary to distinguish “increased pressure hydrocephalus” from “hydrocephalus e vacuo”. It needs to be emphasized from the start that these two mechanisms of ventricular dilation are not mutually exclusive and that they may combine and interact. For example, long-standing distension of the cerebral ventricles because of increased pressure eventually causes tissue damage and hemispheric atrophy. Conversely, massive destruction of the hemispheres, such as in hydranencephaly (cf. Chap. 3), may become superimposed with secondary impairment of CSF circulation, causing pressure hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam H (1953) Kugelförmige Pigmentzellen als Anzeiger der Liquorströmung in den Gehirnventrikeln von Krallenfroschlarven. Z Naturforsch (B) 8:250–258

    Google Scholar 

  • Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH (1965) Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med 273:117–126

    Article  PubMed  CAS  Google Scholar 

  • Adolph RJ, Fukusumi H, Fowler NO (1967) Origin of cerebrospinal fluid pulsations. Am J Physiol 212:840–846

    PubMed  CAS  Google Scholar 

  • Alvord EC Jr (1961) The pathology of hydrocephalus. In: Fields WS, Desmond MM (eds) Disorders of the developing nervous system, Chap XIV. Thomas, Springfield, Ill, pp 343–412

    Google Scholar 

  • Bachs A, Walker AE (1953) Experimental hydrocephalus. J Neuropathol Exp Neurol 12:283–292

    Article  PubMed  CAS  Google Scholar 

  • Bakay L Jr (1947) Phylogenesis of the perivascular spaces of the brain. Nature 160:789–790

    Article  PubMed  Google Scholar 

  • Bering EA Jr (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid. Arch Neurol Psychiatry 73:165–172

    Google Scholar 

  • Bering EA Jr (1962) Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19:405–413

    Article  PubMed  Google Scholar 

  • Bering EA Jr, Sato O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063

    Article  PubMed  Google Scholar 

  • Boulay GH du (1966) Pulsatile movements in the CSF pathways. Br J Radiol 39:255–262

    Article  PubMed  Google Scholar 

  • Brightman MW (1967) Movement within the brain of ferritin injected into the cerebrospinal fluid compartments. In: Klatzo I, Seitelberger F (eds) Brain edema. Springer, Wien New York, pp 271–284

    Google Scholar 

  • Brightman MW (1968) The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. In: Lajtha A, Ford DH (eds) Brain barrier systems. Progress in Brain Research 29:19–37

    Chapter  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  PubMed  CAS  Google Scholar 

  • Cathcart III RS, Worthington WC Jr (1964) Ciliary movement in the rat cerebral ventricles: clearing action and directions of currents. J Neuropathol Exp Neurol 23:609–618

    Article  PubMed  Google Scholar 

  • Cutler RW, Deuel RK, Barlow CF (1967) Albumin exchange between plasma and cerebrospinal fluid. Arch Neurol 17:261–270

    PubMed  CAS  Google Scholar 

  • Cutler RWP, Murray JE, Moody RA (1973) Overproduction of cerebrospinal fluid in communicating hydrocephalus. A case report. Neurology 23:1–5

    CAS  Google Scholar 

  • Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child 8:406–482

    Google Scholar 

  • Davson H (1967) Physiology of the cerebrospinal fluid. Churchill, London

    Google Scholar 

  • Del Bigio MR, Bruni JE, Fewer HD (1985) Human neonatal hydrocephalus. An electron microscopic study of the periventricular tissue. J Neurosurg 63:56–63

    Article  PubMed  Google Scholar 

  • Di Rocco C, Di Trapani G, Pettorossi VE, Caldarelli M (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs Brain 5:81–95

    PubMed  Google Scholar 

  • Dohrmann GJ (1971) The choroid plexus in experimental hydrocephalus. Alight and electron microscopic study in normal, hydrocephalic, and shunted hydrocephalic dogs. J Neurosurg 34:56–69

    Article  PubMed  CAS  Google Scholar 

  • Dyke CG, Davidoff LM (1939) An explanation for the ribbing seen in the walls of dilated cerebral ventricles. Yale J Biol Med 11:485–486

    PubMed  CAS  Google Scholar 

  • Edvinsson L, West KA (1971) Relation between intracranial pressure and ventricular size at various stages of experimental hydrocephalus. Acta Neurol Scand 47:451–457

    Article  PubMed  CAS  Google Scholar 

  • Emery JL (1965) Intracranial effects of long-standing decompression of the brain in children with hydrocephalus and meningomyelocele. Dev Med Child Neurol 7:302–309

    Article  PubMed  CAS  Google Scholar 

  • Fishman RA, Greer M (1963) Experimental obstructive hydrocephalus. Changes in the cerebrum. Arch Neurol 8:156–161

    PubMed  CAS  Google Scholar 

  • Friede R (1955) Untersuchungen an flimmerndem Ependym in Kultur. Arch Psychiatr Nervenkr 193:295–302

    Article  CAS  Google Scholar 

  • Friede RL (1962) A quantitative study of myelination in hydrocephalus. (Factors controlling glial proliferation in myelination.) J Neuropathol Exp Neurol 21:645–648

    Article  PubMed  CAS  Google Scholar 

  • Friede RL, Hu KH (1971) A new approach for determining the volume of cerebral extracellular fluid and demonstration of its communication with CSF. J Physiol (Lond) 218:477–493

    CAS  Google Scholar 

  • Gonzales-Darder J, Barbera J, Cerda-Nicolas M, Segura D, Broseta J, Barcia-Salorio JL (1984) Sequential morphological and functional changes in kaolin-induced hydrocephalus. J Neurosurg 61:918–924

    Article  Google Scholar 

  • Granholm L (1966) Induced reversibility of ventricular dilatation in experimental hydrocephalus. Acta Neurol Scand 42:581–588

    Article  PubMed  CAS  Google Scholar 

  • Greenstone MA, Jones RWA, Dewar A, Neville BGR, Cole PJ (1984) Hydrocephalus and primary ciliary dyskinesia. Arch Dis Child 59:481–482

    Article  PubMed  CAS  Google Scholar 

  • Grundy HF (1962) Circulation of cerebrospinal fluid in the spinal region of the cat. J Physiol (Lond) 163:457–465

    CAS  Google Scholar 

  • Harris LS, Roessmann U, Friede RL (1968) Bursting of cerebral ventricular walls. J Pathol 96:33–38

    Article  CAS  Google Scholar 

  • Hayden P, Shurtleff DB, Foltz EL (1970) Ventricular fluid pressure recordings in hydrocephalic patients. Arch Neurol 23:147–154

    PubMed  CAS  Google Scholar 

  • Hesdorffer MB, Scammon RE (1935) Growth of human nervous system. I. Growth of cerebral surface. Proc Soc Exp Biol 33:415–418

    Google Scholar 

  • Hild W (1957) Ependymal cells in tissue culture. Z Zellforsch 46:259–271

    Article  PubMed  CAS  Google Scholar 

  • Hirayama A (1982) Slit ventricle. A reluctant goal of ventriculoperitoneal shunt. Monogr Neural Sci 8:108–111

    Google Scholar 

  • Hochwald GM, Sahar A, Sadik AR, Ransohoff J (1969) Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus. Exp Neurol 25:190–199

    Article  PubMed  CAS  Google Scholar 

  • Hochwald GM, Lux WE Jr, Sahar A, Ransohoff J (1972) Experimental hydrocephalus. Changes in cerebrospinal fluid dynamics as a function of time. Arch Neurol 26:120–129

    PubMed  CAS  Google Scholar 

  • James AE Jr, Burns B, Flor WF, Strecker E-P, Merz T, Bush M, Price DL (1975) Pathophysiology of chronic communicating hydrocephalus in dogs (canis familiaris). J Neurol Sci 24:151–178

    Article  PubMed  Google Scholar 

  • James AE, McComb JG, Christian J, Davson H (1976) The effect of cerebrospinal fluid pressure on the size of drainage pathways. Neurology 26:659–663

    PubMed  Google Scholar 

  • James AE Jr, Novak GR, Strecker E-P, Flor WJ (1977) The central canal of the spinal cord in experimental hydrocephalus: preliminary results. Radiology 125:417–420

    PubMed  Google Scholar 

  • Jones HC (1978) Continuity between the ventricular and subarachnoid cerebrospinal fluid in an amphibian, Rana pipiens. Cell Tissue Res 195:153–167

    Article  PubMed  CAS  Google Scholar 

  • Kaufman B, Sandstrom PH, Young HF (1970) Alteration in size and configuration of the sella turcica as the result of prolonged cerebrospinal fluid shunting. Radiology 97:537–542

    PubMed  CAS  Google Scholar 

  • Kaufman B, Weiss MH, Young HF, Nulsen FE (1973) Effects of prolonged cerebrospinal fluid shunting on the skull and brain. J Neurosurg 38:288–297

    Article  PubMed  CAS  Google Scholar 

  • Laurence KM (1969) Neurological and intellectual sequelae of hydrocephalus. Arch Neurol 20:73–81

    PubMed  CAS  Google Scholar 

  • Lindberg L-A, Vasenius L,Talanti S (1977) The surface fine structure of the ependymal lining of the lateral ventricle in rats with hereditary hydrocephalus. Cell Tissue Res 179:121–129

    PubMed  CAS  Google Scholar 

  • Lindvall M, Owman C (1984) Sympathetic nervous control of cerebrospinal fluid production in experimental obstructive hydrocephalus. Exp Neurol 84:606–615

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo AV, Page LK, Watters GV (1970) Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain 93:679–692

    Article  PubMed  CAS  Google Scholar 

  • Lux WE Jr, Hochwald GM, Sahar A, Ransohoff J (1970) Periventricular water content. Effect of pressure in experimental chronic hydrocephalus. Arch Neurol 23:475–479

    PubMed  CAS  Google Scholar 

  • Marlin AE, Wald A, Hochwald GM, Malhan C (1978) Kaolin-induced hydrocephalus impairs CSF secretion by the choroid plexus. Neurology 28:945–949

    PubMed  CAS  Google Scholar 

  • McAllister II JP, Maugans TA, Shah MV, Truex RC Jr (1985) Neuronal effects of experimentally induced hydrocephalus in newborn rats. J Neurosurg 63:776–783

    Article  PubMed  Google Scholar 

  • Mortensen OA, Weed LH (1934) Absorption of isotonic fluids from the subarachnoid space. Am J Physiol 108:458–468

    Google Scholar 

  • Muller J (1983) Congenital malformations of the brain. In: Rosenberg RN (ed)The clinical neurosciences, vol 3: Neuropathology. Churchill Livingstone, New York Edinburgh London Melbourne, pp III:1–III:33

    Google Scholar 

  • Nakagawa Y, Cervos-Navarro J, Artigas J (1984) A possible paracellular route for the resolution of hydrocephalic edema. Acta Neuropathol (Berl) 64:122–128

    Article  CAS  Google Scholar 

  • Nulsen FE, Spitz EB (1952) Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg Forum 2:399–403

    Google Scholar 

  • Ogata J, Hochwald GM, Cravioto H, Ransohoff J (1972) Distribution of intraventricular horseradish peroxidase in normal and hydrocephalic cat brains. J Neuropathol Exp Neurol 31:454–463

    Article  PubMed  CAS  Google Scholar 

  • Oi S, Matsumoto S (1985) Slit ventricles as a cause of isolated ventricles after shunting. Childs Nerv Syst 1:189–193

    Article  PubMed  CAS  Google Scholar 

  • O’Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45:588–608

    Article  PubMed  Google Scholar 

  • Paisley WJ, Ouvrier RA, Johnston I, Jones RFC, Sofer-Schreiber M, Silva M de (1982) Chronic spinal arachnoiditis in childhood. Dev Med Child Neurol 24:798–807

    Article  PubMed  CAS  Google Scholar 

  • Penfield WL, Elvidge AR (1932) Hydrocephalus and the atrophy of cerebral compression. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 3, section 28. Hafner, New York, pp 1203–1217 (Fascimile of 1932 edition, reprinted 1965)

    Google Scholar 

  • Portnoy HD, Branch C, Chopp M (1985) The CSF pulse wave in hydrocephalus. Childs Nerv Syst 1:248–254

    Article  PubMed  CAS  Google Scholar 

  • Rall DP, Oppelt WW, Patlak CS (1962) Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci 1:43–48

    Article  Google Scholar 

  • Rijssel TG van (1946) Circulation of cerebrospinal fluid in carassius gibelio. Arch Neurol Psychiatry 56:522–543

    Google Scholar 

  • Rosenberg GA, Saland L, Kyner WT (1983) Pathophysiology of periventricular tissue changes with raised CSF pressure in cats. J Neurosurg 59:606–611

    Article  PubMed  CAS  Google Scholar 

  • Rubin RC, Hochwald GM, Liwnicz B,Tiell M, Mizutani H, Shulman K (1972) The effect of severe hydrocephalus on size and number of brain cells. Dev Med Child Neurol 14, Suppl 27:117–120

    Google Scholar 

  • Russell DS (1949) Observations on the pathology of hydrocephalus. Medical Research Council Special Report Series No. 265. Her Majesty’s Stationery Office, London, 4th impression 1968

    Google Scholar 

  • Sahar A, Hochwald GM, Ransohoff J (1969) Alternate pathway for cerebrospinal fluid absorption in animals with experimental obstructive hydrocephalus. Exp Neurol 25:200–206

    Article  PubMed  CAS  Google Scholar 

  • Scammon RE, Hesdorffer MB (1935) Growth of human nervous system. II. Indices of relation of cerebral volume to surface in developmental period. Proc Soc Exp Biol 33:418–421

    Google Scholar 

  • Scarff JE (1952) Nonobstructive hydrocephalus. Treatment by endoscopic cauterization of choroid plexus. Long term results. J Neurosurg 9:164–176

    Article  PubMed  CAS  Google Scholar 

  • Serlo W, Heikkinen E, Saukkonen A-L, Wendt L v (1985) Classification and management of the slit ventricle syndrome. Childs Nerv Syst 1:194–199

    Article  PubMed  CAS  Google Scholar 

  • Shenkin HA, Perryman CR (1946) Reversibility of cerebral ventricular dilatation. J Neurosurg 3:234–238

    Article  PubMed  CAS  Google Scholar 

  • Torvik A, Stenwig AE (1977) The pathology of experimental obstructive hydrocephalus. Electron microscopic observations. Acta Neuropathol (Berl) 38:21–26

    Article  PubMed  CAS  Google Scholar 

  • Van Harreveld A (1966) Brain tissue electrolytes. Butterworth, Washington

    Google Scholar 

  • Wakai S, Nagai M (1984) Ventricular diverticulum. J Neurol Neurosurg Psychiatry 47:514–517

    Article  PubMed  CAS  Google Scholar 

  • Weed LH (1917) The development of the cerebro-spinal spaces in pig and in man. Contributions to Embryology 5, No. 14. Carnegie Institute, Washington

    Google Scholar 

  • Weiler RO, Williams BN (1975) Cerebral biopsy and assessment of brain damage in hydrocephalus. Arch Dis Child 50:763–768

    Article  Google Scholar 

  • Weiler RO, Wisniewski H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92:819–828

    Article  Google Scholar 

  • Weiler RO, Wisniewski H, Shulman K, Terry RD (1971) Experimental hydrocephalus in young dogs: histological and ultrastructural study of the brain tissue damage. J Neuropathol Exp Neurol 30:613–626

    Article  Google Scholar 

  • White DN, Wilson KC, Curry GR, Stevenson RJ (1979) The limitation of pulsatile flow through the aqueduct of Sylvius as a cause of hydrocephalus. J Neurol Sci 42:11–51

    Article  PubMed  CAS  Google Scholar 

  • Worthington WC Jr, Cathcart III RS (1963) Ependymal cilia: distribution and activity in the adult human brain. Science 139:221–222

    Article  PubMed  Google Scholar 

  • Yakovlev PI (1947) Paraplegias in hydrocephalics. Am J Ment Defic 51:561–576

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friede, R.L. (1989). Hydrocephalus — Basic Concepts and General Pathology. In: Developmental Neuropathology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73697-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73697-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73699-5

  • Online ISBN: 978-3-642-73697-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics