Skip to main content

Algebraic Turbulence Model for Stratified Tidal Flows

  • Conference paper

Abstract

An algebraic turbulence model has been developed on the basis of classical ideas of mixing length and damping functions with the intention of engineering application. The empirical constants introduced by this closure have been calibrated with data from meteorology, oceanography and laboratory experiments published in the literature, yielding a set of parameters not tuned to a particular system. Long-term simulations with this turbulence model implemented in a finite-difference numerical model reproduce all the important features of field data. Thus, the general applicability of this model as a predictive tool for estuarine flow and transport processes is demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arya SPS (1972) The critical condition for the maintenance of turbulence in stratified flows. Q J R Meteorol Soc 98:264–273

    Article  Google Scholar 

  • Arya SPS, Plate EJ (1969) Modelling of the stably stratified atmospheric boundary layer. J Atmos Sci 26:656–665

    Article  Google Scholar 

  • Bloss S, Harleman DRF (1980) The effect of wind-induced mixing on the seasonal thermocline in lakes and reservoirs. Proc 2nd Int Symp on Stratified Flows. Trondheim, Norway. Tapir

    Google Scholar 

  • Blumberg AF (1977) Numerical model of estuarine circulation. J Hydr Div 103:295–310

    Google Scholar 

  • Boussinesq J (1877) Essai sur la théorie des eaux courantes. Mem Pres Acad Sci 23, Paris

    Google Scholar 

  • Bowden KF, Gilligan RM (1971) Characteristic features of estuarine circulation as represented in the Mersey estuary. Limnol Oceanogr 16:490–502

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux profile relationships in the atmospheric surface layer. J Atmos Sci 128:181–189

    Article  Google Scholar 

  • Ellison TH, Turner JS (1960) Mixing of dense fluid in a turbulent pipe flow, Part 1. Dependence of transfer coefficients on local stability. J Fluid Mech 8:529–544

    Article  Google Scholar 

  • Fage A, Falkner VM (1932) Appendix to Taylor GI, The transport of vorticity and heat through fluids in turbulent motion. Proc R Soc Ser A 135:685–705

    Article  Google Scholar 

  • Hurley Octavio KA, Jirka GH, Harleman DRF (1977) Vertical heat transport mechanisms in lakes and reservoirs. RM Parsons Lab Tech Rep No 227, MIT Cambridge

    Google Scholar 

  • Kent RE, Pritchard A (1959) A test of mixing length theories in a coastal plain estuary. J Mar Res 18:62–72

    Google Scholar 

  • Kondo J, Kanechika O, Yasuda N (1978) Heat and momentum transfers under strong stability in the atmospheric surface layer. J Atoms Sci 35:1012–1021

    Article  Google Scholar 

  • Leendertse JJ, Alexander RC, Liu S (1973) A three-dimensional model for estuaries and coastal seas: Vol 1 Principles of computation. The Rand Corporation R-1417-OWRR

    Google Scholar 

  • Linden PF (1980) Mixing across a density interface produced by grid turbulence. J Fluid Mech 100:691–703

    Article  Google Scholar 

  • Ludwieg H (1956) Bestimmung des Verhältnisses der Austauschkoeffizienten für Wärme und Impuls bei turbulenten Grenzschichten. Z Flugw Weltraum 4:73–81

    Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience, New York

    Google Scholar 

  • Mamayev OI (1958) The influence of stratification on vertical turbulent mixing in the sea. Izv Geo-phys Ser, pp 870–875

    Google Scholar 

  • McQuivey RS, Richardson EV (1969) Some turbulence measurements in open-channel flow. J Hydr Div 95:209–223

    Google Scholar 

  • Monin AS, Yaglom AM (1977) Statistical fluid mechanics. The MIT Press, Cambridge

    Google Scholar 

  • Munk WH, Anderson ER (1948) Notes on a theory of the thermocline. J Mar Res 7:276–295

    Google Scholar 

  • Nezu I, Rodi W (1986) Open-channel flow measurements with a laser doppler anemometer. J Hydr Eng 112:335–355

    Article  Google Scholar 

  • Odd NM, Rodger JG (1978) Vertical mixing in stratified tidal flows. J Hydr Div 104:337–351

    Google Scholar 

  • Pritchard DW (1967) What is an estuary: physical viewpoint. In: Lauff GH (ed) Estuaries. AAAS Publ No 83, Washington D.C.

    Google Scholar 

  • Proudman J (1953) Dynamical oceanography. Methuen, London

    Google Scholar 

  • Rossby CG, Montgomery RB (1935) The layer of friction influence in wind and ocean currents. Pap Phys Oceanogr Meteorol 3(3):110

    Google Scholar 

  • Smith TJ, Takhar HS (1979) On the calculation of the width averaged flow due to long waves in open channel. J Hydr Res 17:329–340

    Article  Google Scholar 

  • Stewart RW (1959) The problem of diffusion in a stratified fluid. Adv Geophys 6:303–311

    Article  Google Scholar 

  • Ueda H, Mitsumoto S, Komori S (1981) Buoyancy effects on the turbulent transport processes in the lower atmosphere. Q J R Meteorol Soc 107:561–578

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehfeldt, R., Bloss, S. (1988). Algebraic Turbulence Model for Stratified Tidal Flows. In: Dronkers, J., van Leussen, W. (eds) Physical Processes in Estuaries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73691-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73691-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73693-3

  • Online ISBN: 978-3-642-73691-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics