Bifurcation, Periodicity and Chaos by Thermal Effects in Heterogeneous Catalysis

  • E. Wicke
  • H. U. Onken
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)


In the case of reactions far from equilibrium under isothermal conditions in homogeneous liquid media the interaction of a non-linear reaction mechanism with diffusion of reaction components determines the dynamical behaviour of the reacting system and the formation of dissipative structures. Contrary to this, in the case of the heterogeneous gas-solid media of catalysis that will be dealt with in the following, the reaction is restricted to the surface of (usually porous) pellets, and their superheating by an exothermic reaction gives rise to non-isothermal conditions. The dynamical behaviour of such heterogeneous reacting systems far from equilibrium is determined by the interaction of the non-linearities of the reaction mechanism at the catalyst surface with the processes of heat transfer, predominantly conduction and convection. The strongest non-linearity is the exponential-like increase of the reaction rate with increasing catalyst temperature due to the Arrhenius law. Besides this, other types of non-linearities, too, may occur in the reaction mechanism at the surface, controlling the dynamical behaviour under isothermal conditions, and leading in some cases to isothermal oscillations of the reaction rate as they have been observed at single catalyst pellets [1,2], at samples of catalyst powder [2–4], and at specimens of single crystal planes of the catalytically active metal [5–8].


Tubular Reactor Ethane Oxidation Deterministic Chaos Feed Temperature Catalyst Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Beusch, P. Fieguth, E. Wicke: Chem.-Ing.-Techn. 44, 445 (1972)CrossRefGoogle Scholar
  2. 2.
    E. Wicke, P. Kummann, W. Keil, J. Schiefler: Ber. Bunsenges. Phys. Chem. 84, 315 (1980)Google Scholar
  3. 3.
    W. Keil, E. Wicke: Ber. Bunsenges. Phys. Chem. 84, 377 (1980)Google Scholar
  4. 4.
    D. Böcker, E. Wicke: Ber. Bunsenges. Phys. Chem 89, 629 (1985)Google Scholar
  5. 5.
    G. Ertl, P.R. Norton, J. Rüstig: Phys. Rev. Lett. 49, 177 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    R. Imbihl, M.P. Cox, G. Ertl, N. Müller, W. Brenig: J. Chem. Phys. 83, 1578 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    R. Imbihl, M.P. Cox, G. Ertl: J. Chem. Phys. 84, 3519 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    M. Eiswirth, G. Ertl: Surf. Sci. 177, 90 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    P. Hugo: Ber. Bunsenges. Phys. Chem. 74, 121 (1970)Google Scholar
  10. 10.
    E. Wicke, H.U. Onken: Chem. Engng. Sci. 41, 681 (1986)CrossRefGoogle Scholar
  11. 11.
    C. van Heerden: Ind. Eng. Chem. 45, 1242 (1953);CrossRefGoogle Scholar
  12. 11a.
    C. van Heerden: Chem. Engng. Sci. 8, 133 (1958)CrossRefGoogle Scholar
  13. 12.
    W. Oppelt, E. Wicke: Grundlagen der chemischen Prozeßregelung (R. Oldenbourg Verlag 1964)Google Scholar
  14. 13.
    C. Wagner: Chemische Technik 18, 1, 28 (1945)Google Scholar
  15. 14.
    H.U. Onken: Dissertation, Münster (1986)Google Scholar
  16. 15.
    P. Fieguth, E. Wicke: Chem.-Ing.-Techn. 43, 604 (1971) (P.Fieguth, Dissertation, Münster 1971)CrossRefGoogle Scholar
  17. 16.
    E. Wicke, D. Vortmeyer: Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 63, 145 (1959)Google Scholar
  18. 17.
    G. Padberg, E. Wicke: Chem. Engng. Sci. 22, 1035 (1967)CrossRefGoogle Scholar
  19. 18.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano: Physica 16D, 285 (1985)MathSciNetADSGoogle Scholar
  20. 19.
    F. Takens: In Lecture Notes in Mathematics, Vol. 898 (Springer, Berlin 1981) p. 366Google Scholar
  21. 20.
    P. Grassberger, I. Procaccia: Physica 9D, 189 (1983)MathSciNetADSGoogle Scholar
  22. 21.
    H.U. Onken, E. Wicke: Ber. Bunsenges. Phys. Chem. 90, 976 (1986)Google Scholar
  23. 22.
    G. Ertl: private communicationGoogle Scholar
  24. 23.
    H.G. Schuster: Deterministic Chaos (Physik-Verlag, Weinheim 1984)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • E. Wicke
    • 1
  • H. U. Onken
    • 1
  1. 1.Institut für Physikalische ChemieUniversität MünsterMünsterGermany

Personalised recommendations