Spatiotemporal Organization in Biological and Chemical Systems: Historical Review

  • J. J. Tyson
  • M. L. Kagan
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)


The ability to tell time and location is characteristic of living organisms. We are all aware of our daily cycle of sleep and wakefulness, connected to underlying circadian rhythms of body temperature and hormone levels. Equally familiar to us are the relentless beating of our heart and the slower rhythm of breathing. Proper function of many of our organs depends not only on temporal periodicity but also on spatially organized behavior. For example, during one heart beat, a wave of muscular contraction must pass over the surface of the ventricle at the proper speed and in the right direction so as to pump blood efficiently through the aorta. Similarly, proper digestion relies on the correct tempo and direction of peristaltic waves in the intestine. Surely the most dramatic example of clocks and maps in biological systems is provided by the developing embryo, as the bau-plan of a complicated multicellular organism unfolds in a spectacular display of cellular differentiation and morphogenetic movements strictly coordinated in space and time. To account for the essential, intrinsic spatiotemporal organization of biological organisms in terms of the basic principles of biophysical chemistry, a new approach to biology is necessary.


Chemical System Temporal Oscillation Dictyostelium Discoideum Morphogenetic Movement Spatiotemporal Organization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.G.Th. Fechner: Schweigger’s J. Chem. Phys. 53, 129 (1928)Google Scholar
  2. 2.
    E.S. Hedges, J.E. Myers: The Problem of Physico-Chemical Periodicity (E. Arnold, London 1926)Google Scholar
  3. 3.
    G. Lippmann: Ann. Phys. Chem. 149, 4 (1972)Google Scholar
  4. 4.
    U.F. Franck: In Biological and Biochemical Oscillators, ed. by B. Chance, E.K. Pye, A. Ghosh, B. Hess (Academic Press, New York London 1973) p.7Google Scholar
  5. 5.
    R.E. Liesegang: Z. Phys. Chem. 23, 365 (1896)Google Scholar
  6. 6.
    K.H. Stern: Chem. Rev. 54, 79 (1954)CrossRefGoogle Scholar
  7. 7.
    Rayleigh: Proc. Roy. Soc. 99A, 372 (1921)ADSGoogle Scholar
  8. 8.
    J.J. Griffiths: In Oscillations and Traveling Waves in Chemical Systems, ed. by R.J. Field, M. Burger (Wiley-Interscience, New York 1985) p.529Google Scholar
  9. 8a.
    B. Lewis, G. von Elbe: Combustion, Flames and Explosions of Gases (Academic Press, New York, London 1987). Earlier editions were published in 1938, 1951, and 1961Google Scholar
  10. 9.
    R. Luther: Z. Elektrochemie 12, 596 (1906)CrossRefGoogle Scholar
  11. 10.
    K. Showalter, J.J. Tyson: J. Chem. Educ. (in press)Google Scholar
  12. 11.
    J.S. Morgan: J. Chem. Soc. Trans. 109, 274 (1916)CrossRefGoogle Scholar
  13. 12.
    W.C. Bray: J. Am. Chem. Soc. 43, 1262 (1921)CrossRefGoogle Scholar
  14. 13.
    W.C. Bray, H.A. Liebhafsky: J. Am. Chem. Soc. 53, 38 (1931)CrossRefGoogle Scholar
  15. 14.
    F.O. Rice, M. Reiff: J. Phys. Chem. 31, 1352 (1927)CrossRefGoogle Scholar
  16. 15.
    A.J. Lotka: J. Am. Chem. Soc. 42, 1595 (1920)CrossRefGoogle Scholar
  17. 16.
    A.M. Turing: Phil. Trans. R. Soc. Lond. B237, 37 (1952)ADSGoogle Scholar
  18. 17.
    B.P. Belousov: In Oscillations and Traveling Waves in Chemical Systems, ed. by R.J. Field, M. Burger (Wiley-Interscience, New York 1985) p.605Google Scholar
  19. 18.
    A.T. Winfree: J. Chem. Educ. 61, 661 (1986)CrossRefGoogle Scholar
  20. 19.
    A.T. Wilson, M. Calvin: J. Am. Chem. Soc. 77, 5948 (1955)CrossRefGoogle Scholar
  21. 20.
    N.E. Mustafa, K. Utsumi, L. Packer: Biochem. Biophys. Res. Commun. 24, 381 (1966)CrossRefGoogle Scholar
  22. 21.
    L.N.M. Duysens, J. Amesz: Biochim. Biophys. Acta 24, 19 (1957)CrossRefGoogle Scholar
  23. 22.
    B. Chance, R.W. Estabrook, A. Ghosh: Proc. Nat. Acad. Sci. USA 51, 1244 (1964)ADSCrossRefGoogle Scholar
  24. 23.
    B. Hess, K. Brand, K. Pye: Biochem. Biophys. Res. Commun. 23, 102 (1966)CrossRefGoogle Scholar
  25. 24.
    A. Ghosh, B. Chance: Biochem. Biophys. Res. Commun. 16, 174 (1964)CrossRefGoogle Scholar
  26. 25.
    J.J. Higgins: Proc. Nat. Acad. Sci. USA 51, 989 (1964)ADSCrossRefGoogle Scholar
  27. 26.
    I. Yamazaki, K. Yokota, R. Nakajima: Biochem. Biophys. Res. Commun. 21, 582 (1965)CrossRefGoogle Scholar
  28. 27.
    J. Gorman, P. Tauro, M. LaBerge, J. Halvorson: Biochem. Biophys. Res. Commun. 15, 43 (1964)CrossRefGoogle Scholar
  29. 28.
    M. Masters, P.L. Kuempel, A.B. Pardee: Biochem. Biophys. Res. Commun. 15, 38 (1964)CrossRefGoogle Scholar
  30. 29.
    A.M. Zhabotinskii: Biophysics 9, 329 (1964)Google Scholar
  31. 30.
    A.T. Winfree: In Biological and Biochemical Oscillators, ed. by B. Chance, E.K. Pye, A. Ghosh, B. Hess (Academic Press, New York, London 1973) p. 461, 479Google Scholar
  32. 31.
    P. Glansdorff, I. Prigogine: Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York 1971)zbMATHGoogle Scholar
  33. 32.
    N.M. Chernavskaya, D.S. Chernavskii: Sov. Phys. Usp. 4, 850 (1961)ADSCrossRefGoogle Scholar
  34. 33.
    J.J. Higgins: Ind. Eng. Chem. 59, 19 (1967)CrossRefGoogle Scholar
  35. 34.
    E.E. Selkov: Eur. J. Biochem. 4, 79 (1968)CrossRefGoogle Scholar
  36. 35.
    B.C. Goodwin: Adv. Enz. Regul. 3, 425 (1965)CrossRefGoogle Scholar
  37. 36.
    H. Degn, D. Mayer: Biochim. Biophys. Acta 180, 291 (1969)CrossRefGoogle Scholar
  38. 37.
    R. Lefever: J. Chem. Phys. 49, 4977 (1968);ADSCrossRefGoogle Scholar
  39. 37a.
    R. Lefever: J. Theor. Biol. 30, 267 (1971)CrossRefGoogle Scholar
  40. 38.
    A.N. Zaikin, A.M. Zhabotinskii: Nature 225, 535 (1970)ADSCrossRefGoogle Scholar
  41. 39.
    A.T. Winfree: Science 175, 634 (1972)ADSCrossRefGoogle Scholar
  42. 40.
    R.J. Field, E. Körös, R.M. Noyes: J. Am. Chem. Soc. 94, 8649 (1972)CrossRefGoogle Scholar
  43. 41.
    R.J. Field, R.M.Noyes: J. Chem. Phys. 60, 1877 (1974)ADSGoogle Scholar
  44. 42.
    O.E. Rössler: Z. Naturforsch. 31a, 259 (1976)ADSGoogle Scholar
  45. 43.
    I.R. Epstein, K. Kustin, P. DeKepper, M. Orban: Sci. Amer. 284(3), 112 (1983)CrossRefGoogle Scholar
  46. 44.
    Theories of Biological Pattern Formation (The Royal Society, London 1981)Google Scholar
  47. 45.
    H. Degn: Acta Chem. Scand. 21, 1057 (1967)CrossRefGoogle Scholar
  48. 46.
    S.D. Furrow: In Oscillations and Traveling Waves in Chemical Systems, ed. by R.J. Field, M. Burger (Wiley-Interscience, New York 1985) p. 171Google Scholar
  49. 47.
    P. Bowers, R.M. Noyes: In Oscillations and Traveling Waves in Chemical Systems, ed. by R.J. Field, M. Burger (Wiley-Interscience, New York 1985) p.473Google Scholar
  50. 48.
    L. Glass, M.C. Mackey: Ann. N.Y. Acad. Sci. 316, 214 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. J. Tyson
    • 1
  • M. L. Kagan
    • 2
  1. 1.Department of BiologyVirginia TechBlacksburgUSA
  2. 2.Department of Organic ChemistryHebrew UniversityJerusalemIsrael

Personalised recommendations