Spatiotemporal Patterns of Block in an Ionic Model of Cardiac Purkinje Fibre

  • M. R. Guevara
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)


The electrical activity of cardiac muscle serves as the trigger for the mechanical contraction of the heart that is essential for the preservation of life. In the mammalian heart, there is a well-organi zed sequence of activation in both space and time. This synchronized activity hinges upon the existence of a specialized electrical conduction system. The sinoatrial node, a specialized structure sitting high up in the right atrium, fires first, sending an electrical signal to the right and left atria (initiating contraction of the muscle in both atria). From the right atrium, the signal proceeds to another specialized structure, the atrioventricular node, which then relays the signal on to the bundle of His, the bundle branches, and the Purkinje network. This network is composed of fine strands of Purkinje cells which ramify over the inner surface of the ventricles, delivering the cardiac impulse to the working myocardium of both ventricles. Thus, the entire specialized conduction system serves to generate and conduct the cardiac impulse in a highly coordinated manner, with one activation of any heart cell for each activation of any other heart cell. In addition, the difference in activation times of any two given cells remains fixed from beat to beat.


Conduction Velocity Action Potential Duration Purkinje Fibre Atrioventricular Node Tangent Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.R. Guevara: Chaotic Cardiac Dynamics, Doctoral Thesis (McGill University, Montreal 1984)Google Scholar
  2. 2.
    D.P. Zipes, J.C. Bailey, V. Elharrar (eds.): The Slow Inward Current and Cardiac Arrhythmias (Martinus Nijhoff, The Hague 1980)Google Scholar
  3. 3.
    G.H. Sharp, R.W. Joyner: Biophys. J. 31, 403 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    R.W. Joyner: Biophys. J. 35, 113 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    J. Henry: In Computing Methods in Applied Sciences and Engineering, V, ed. by R. Glowinski, J.L. Lions (North-Holland, Amsterdam 1982) p. 621Google Scholar
  6. 6.
    R.E. McAllister, D. Noble, R.W. Tsien: J. Physiol. (Lond.) 251, 1 (1975).Google Scholar
  7. 7.
    M.R. Guevara, A. Shrier: Biophys. J. 52, 165 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    B. Victorri: Simulation Numérique de Fotentiels d’Action Cardiaque, Rapport Technique EP82-R-23 (Ecole Polytechnique de Montréal, Montreal 1982)Google Scholar
  9. 9.
    B. Victorri, A. Vinet, F.A. Roberge, J.-P. Drouhard: Comp. Biomed. Res. 18, 10 (1985)CrossRefGoogle Scholar
  10. 10.
    P.J. Roache: Computational Fluid Dynamics (Hermosa, Albuquerque 1976)Google Scholar
  11. 11.
    R.E. McAllister: Biophys. J. 8, 951 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    J. Henry: In Mathematical Methods in Immunology and Medicine, ed. by G.I. Marchuk, L.N. Belykh (North-Holland, Amsterdam 1983) p. 285Google Scholar
  13. 13.
    K.F. Wenckebach: Zeitschr. f. Klin. Med. 37, 475 (1899)Google Scholar
  14. 14.
    F.J.L. van Capelle: Slow Conduction and Cardiac Arrhythmias, Doctoral Thesis (Universiteit van Amsterdam, Amsterdam 1983)Google Scholar
  15. 15.
    M.N. Levy, P.J. Martin, J. Edelstein, L.B. Goldberg: Prog. Cardiovasc. Dis. 16, 601 (1974)CrossRefGoogle Scholar
  16. 16.
    A. Shrier, H. Dubarsky, M. Rosengarten, M.R. Guevara, S. Nattel, L. Glass: Circ. (in press)Google Scholar
  17. 17.
    M.S. Spach: In Normal and Abnormal Conduction in the Heart, ed. by A. Paes de Carvalho, B.F. Hoffman, M. Lieberman (Futura, Mount Kisco 1982) p. 145Google Scholar
  18. 18.
    M.S. Spach. J.M. Kootsey: Am. J. Physiol. 244, H3 (1983)Google Scholar
  19. 19.
    K. Maeda, T. Yagi, A. Noguchi: IEEE Trans. Biomed. Eng. BME-27, 139 (1980)CrossRefGoogle Scholar
  20. 20.
    M.B. Berkinblit, N.D. Vvedenskaya, I. Dudzyavichus, S.A. Kovalev, S.V. Fomin, A.V. Kholopov, L.M. Chailakhyan: Biophysics 15, 545 (1970)Google Scholar
  21. 21.
    D. DiFrancesco, D. Noble: Phil. Trans. Roy. Soc. Lond. B 307, 353 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Smith, R.J. Cohen: Proc. Natl. Acad. Sci. USA 81, 233 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Watanabe, L.S. Dreifus: Cardiovasc. Res. 1, 150 (1967)CrossRefGoogle Scholar
  24. 24.
    B.I. Sasyniuk, C. Mendez: Circ. Res. 28, 3 (1971)Google Scholar
  25. 25.
    W. Mobitz: Zeitsch. f. d. ges. exp. Med. 41, 180 (1924)CrossRefGoogle Scholar
  26. 26.
    L. Glass, M.R. Guevara, A. Shrier: Ann. N.Y. Acad. Sci. 504, 168 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    D.M. Decherd, A. Ruskin: Brit. Heart J. 8, 6 (1946)CrossRefGoogle Scholar
  28. 28.
    E. Downar, M.J. Janse, D. Durrer: Circ. 55, 455 (1977)Google Scholar
  29. 29.
    M.R. Guevara, A. Shrier: unpublishedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. R. Guevara
    • 1
  1. 1.Department of PhysiologyMcGill UniversityMontrealCanada

Personalised recommendations